S1. Ans.(b)
Sol. Required Ratio $=\frac{200+280}{380+420}=\frac{480}{800}=\frac{3}{5}$
S2. Ans.(b)
Sol. Number of defective products $=\frac{20}{100}(160+480)$

$$
\begin{aligned}
& =\frac{20}{100}(640) \\
& =128
\end{aligned}
$$

S3. Ans.(a)
Sol. Required percent $=\frac{180}{300} \times 100=60 \%$
S4. Ans.(b)
Sol. Required percent $=\frac{560-480}{480} \times 100$

$$
\begin{aligned}
& =\frac{80}{400} \times 100 \\
& =\frac{100}{6} \\
& =\frac{50}{3} \\
& =16 \frac{2}{3} \%
\end{aligned}
$$

S5. Ans.(d)
Sol. Difference $=(480+200+520)-(160+280+380)$

$$
\begin{aligned}
& =1200-820 \\
& =380
\end{aligned}
$$

S6. Ans.(e)
Sol. Required ratio $=\frac{45 \times 40}{60 \times 30} \times \frac{2}{1}=\frac{2}{1}$
S7. Ans.(a)
Sol. Let the total number of population

$$
x \times \frac{60}{100} \times \frac{10}{100} \times \frac{1}{2}=300
$$

$$
\mathrm{x}=10000
$$

S8. Ans.(e)
Sol. Number of people having Bank Account in village $C=0.6 x$
Number of people having Bank account in village $D=0.55 \times 2 \mathrm{x}=1.1 \mathrm{x}$
Required percentage $=\frac{1.1 \mathrm{x}-0.6 \mathrm{x}}{1.1 \mathrm{x}} \times 100$

$$
\begin{aligned}
& =\frac{0.5}{1.1} \times 100 \\
& =45.45 \%
\end{aligned}
$$

S9. Ans.(d)
Sol. Required Percentage $=\frac{1 \times 0.45+2 \times 0.6+3 \times 0.6}{1+2+3} \times 100$

$$
=\frac{3.45}{6} \times 100=57.5 \%
$$

S10. Ans.(b)

Sol. Required percentage $=\frac{60-40}{40} \times 100=50 \%$
S11. Ans.(d)
Sol. If the side of a right angle triangle is a, b and c and printer is P and area is Δ then
In-radius $=\frac{1}{2}(\mathrm{a}+\mathrm{b}-\mathrm{c})$
Or $=\frac{2 \Delta}{\mathrm{P}}$
Either using sentence B or using sentences A and C
S12. Ans.(d)
Sol. A \rightarrow Amount $=9331.2$, time $=2$ year
$\mathrm{B} \rightarrow$ difference between CI and $\mathrm{SI}=51.2$ for two years
$\mathrm{C} \rightarrow \mathrm{P} \rightarrow 8000$
From B \& C
$51.2=\frac{8000 \times \mathrm{R}^{2}}{100^{2}}$
From A and C
$\frac{9331.2-8000}{8000} \times 100=16.64 \%$
$r=8 \%$
S13. Ans.(d)
Sol.
(A)

(B)

$$
\begin{aligned}
& \frac{1}{p+q}=\frac{1}{p}+\frac{1}{q} \\
& \frac{13}{40}=\frac{1}{8}+\frac{1}{q} \\
& \frac{1}{q}=\frac{13-5}{40}=\frac{1}{8} \\
& q=8 \text { days }
\end{aligned}
$$

(C)

$$
\begin{array}{ccc}
& \mathrm{P} & \mathrm{Q} \\
\text { efficiency } & \frac{125}{2} & 100 \\
\text { time } & 8 & 5
\end{array}
$$

Time taken by Q is 5 days
S14. Ans.(e)
Sol. from A, B \& C
Non-voting population of a certain country

$$
\begin{aligned}
& =\frac{70}{100} \times 30 \text { milion } \\
& =21 \text { milion }
\end{aligned}
$$

S15. Ans.(b)
Sol. Profit $=300$

$$
A \rightarrow C P=1200-300=900
$$

$\%$ profit $=\frac{300}{900} \times 100=33 \frac{1}{3}$
B $\rightarrow 25 \rightarrow 400$
$1 \% \rightarrow 16$
$100 \% \rightarrow 1600$
$C P=1200-300=900$
$\%$ profit $=\frac{300}{900} \times 100=33 \frac{1}{3}$
$\mathrm{C} \rightarrow \%$ profit $=\frac{300}{900} \times 100=33 \frac{1}{3}$
S16. Ans.(a)
Sol. $\mathrm{x}= \pm 12$
$y=12$
$\therefore \mathrm{x} \leq \mathrm{y}$
S17. Ans.(a)
Sol. $x=2, \frac{5}{2}$
$y=4, \frac{5}{2}$
$\therefore \mathrm{x} \leq \mathrm{y}$
S18. Ans.(a);
Sol. $x=7,8 \quad y=5,1$
$x>y$.
S19. Ans.(a);
Sol. $x=-\frac{\sqrt{102}}{\sqrt{200}} \cdot x>-1 y$
$y=\frac{\sqrt{200}}{\sqrt{160}} \cdot y=-1$
$x>y$
S20. Ans.(c);
Sol. $x=183$
$y=200$
$\mathrm{x}<\mathrm{y}$.
S21. Ans.(c)
Sol. Let pipes A and B takes t minutes together.
A will take $(t+3)$ minutes to fill the tank
B will $\operatorname{tank}\left(\mathrm{t}+\frac{64}{3}\right)$ minutes to fill the tank
$\frac{1}{t+3}+\frac{3}{3 t+64}=\frac{1}{t}$
$\frac{3 \mathrm{t}+64+3 \mathrm{t}+9}{(\mathrm{t}+3)(3 \mathrm{t}+64)}=\frac{1}{\mathrm{t}}$
$6 t^{2}+73 \mathrm{t}=3 \mathrm{t}^{2}+64 \mathrm{t}+9 \mathrm{t}+192$
$3 \mathrm{t}^{2}-192=0$
$\left(\mathrm{t}^{2}-64\right)=0$
$\mathrm{t}=8$ minutes
S22. Ans.(d)
Sol. Marks of T = 75
Marks of $R=65$
Marks of $\mathrm{Q}=110$
Marks of $\mathrm{P}=85$
Marks of $U=120$
Maximum marks $=200$
Required percentage $=\frac{120}{200} \times 100=60 \%$

S23. Ans.(d)
Sol. Let the largest and smallest angles be x and 3 x . Now
$x+3 x+56=180$
$\mathrm{x}=31$
largest angle $=93^{\circ}$.
S24. Ans.(a)
Sol. Let the odd numbers be $\mathrm{x}, \mathrm{x}+2, \mathrm{x}+4, \mathrm{x}+6$ and the even numbers be $\mathrm{y}, \mathrm{y}+2, \mathrm{y}+4$.
Now $(4 x+12)-(3 y+6)=20$
And $(y+4)-(x+6)=5$
Solving them, we get $x=35$ and $y=42$
Required sum $=35+42=77$
S25. Ans.(b)
Sol. Let initial CP of book is x .
CP to Shishir $=\frac{120}{100} \times \frac{125}{100} \times \frac{90}{100} \mathrm{x}=1.35 \mathrm{x}$
Required percentage decrease $=\frac{1.35 \mathrm{x}-\mathrm{x}}{1.35 \mathrm{x}} \times 100=25.92 \%$
S26. Ans.(d)
Sol. 5\%SP $\rightarrow 14$
SP $\rightarrow 280$
$1.4 \mathrm{CP}=280$
CP=200
New CP $=\frac{80}{100} \times 280=224$
Profit=224-200=24
S27. Ans.(b)
Sol. $\mathrm{P}_{1}\left(1+\frac{10}{100}\right)^{2}=\mathrm{P}_{2}\left(1+\frac{10}{100}\right)^{3}$

$$
\begin{aligned}
& \frac{P_{1}}{P_{2}}=\frac{11}{10} \\
& P_{2}=\frac{10}{21} \times 10500=5000
\end{aligned}
$$

S28. Ans.(a)
Sol. Total amount $=9000\left(\frac{8 \times 2}{100}+\frac{9.5 \times 4}{100}+\frac{11 \times 2}{100}+\frac{12 \times 4}{100}\right)+9000=11160+9000=20160$
S29. Ans. (a)
Sol. Ratio of investment

A	:	B	$:$	C
(8000×12)	$(12000 \times 4)+(16000 \times 8)$		$(16000 \times 9)+(12000 \times 3)$	
24	$:$	44	$:$	45

Share of $\mathrm{A}=\frac{24}{113} \times 22600=$ Rs. 4800
S30. Ans.(a)
Sol. Let speed of the trains $=x, y \mathrm{~km} / \mathrm{h}$

$$
\begin{aligned}
& \frac{92}{x+y}=4, x+y=23, x-y=7 \\
& x=15 \mathrm{kmph} \\
& y=8 \mathrm{kmph}
\end{aligned}
$$

S31. Ans.(b)
Sol.

Total efficiency $=\frac{9}{2}$
Time $=2$ hours
S32. Ans.(a)
Sol. At the three years amount will be $=15000+\frac{15000 \times 3 \times 8}{100}$
$=18600$ Rs.
Now, after three years C.I. annually
So amount $=18600\left(1+\frac{10}{100}\right)^{2}$
$=22506$ Rs.
S33. Ans.(e)
Sol. $A B=60 \mathrm{~km}$
Ram's speed $=x \mathrm{kmph}$
Syham's speed $=y \mathrm{kmph} \frac{60}{x}-\frac{60}{y}=1$
$\frac{60}{y}-\frac{60}{2 x}=\frac{1}{2}$.
From (i) and (ii)
$x=20 \mathrm{kmph}$
S34. Ans.(d)
Sol. Let initially Cask holds V litres of wine

$$
\begin{aligned}
& \frac{\text { Amount of left of wine }}{\text { Initial Amount of wine }}=\left(1-\frac{6}{\mathrm{~V}}\right)^{2} \\
& \frac{121}{121+23}=\left(1-\frac{6}{\mathrm{~V}}\right)^{2} \\
& \frac{121}{144}=\left(1-\frac{6}{\mathrm{~V}}\right)^{2} \\
& \frac{11}{12}=1-\frac{6}{\mathrm{~V}} \\
& \frac{6}{\mathrm{~V}}=\frac{1}{12} \\
& \mathrm{~V}=72 \text { litres }
\end{aligned}
$$

S35. Ans.(c)
Sol. Distance travelled by passenger train in $(9-4)=5$ hours

$$
=5 \times 30=150 \mathrm{~km}
$$

time required to cross the passenger train by mail train $=\frac{150}{(45-30)}=10$ hour so second train will overtake the first, 10 hours after the second train starts
S36. Ans.(e)
Sol. $\times 0.5+1, \times 1-1, \times 1.5+1, \times 2-1, \times 2.5+1$
$22 \times 2.5+1=56$
S37. Ans.(c)
Sol.

$$
82+56=138
$$

S38. Ans.(d)

Sol. $\times 1+1, \times 2+2, \times 3+3, \times 4+4, \times 5+5$
$93 \times 4+4=372+4=376$
S39. Ans.(c)
Sol. $\times 3+1, \times 3+2, \times 3+3 \ldots$
$\therefore 477 \times 3+4=1431+4=1435$
S40. Ans.(d)
Sol. $\times 7+1, \times 6+2, \times 5+3, \times 4+4, \times 3+5 \ldots$
$\therefore 22 \times 6+2=134$

