

Chapter Analysis & Weightage

Chapter Name	Average Weightage (Marks)	Primary Focus of Questions / Most Asked Topics
Electrostatic Potential and Capacitance	4 – 5	Equipotential surfaces, potential due to point charges, and energy stored in capacitor combinations.
Current Electricity	7	Drift velocity, Ohm's Law, Kirchhoff's rules, and power consumption in bulb circuits.
Moving Charges and Magnetism	6 – 7	Ampere's Law, force on current-carrying conductors, and the working/sensitivity of Moving Coil Galvanometers.
Magnetism and Matter	2 – 3	Classification of materials (dia, para, and ferro), relative permeability, and magnetic dipole moment.
Electromagnetic Induction	3 – 4	Lenz's Law, Faraday's Law, induced EMF in loops, and motional EMF calculations.
Alternating Current	5 – 6	LCR circuit impedance, resonance conditions, power in AC circuits, and phase relationships.
Electromagnetic Waves	3	Displacement current properties and identifying parts/uses of the EM spectrum.
Ray Optics and Optical Instruments	9	Total Internal Reflection (critical angle), lens/mirror magnification, and compound microscope magnifying power.
Wave Optics	6	Huygens Principle, Young's Double Slit Experiment (YDSE) fringe width, and diffraction patterns.
Dual Nature of Radiation and Matter	4	Einstein's photoelectric equation, stopping potential graphs, and de-Broglie wavelength for particles.

Atoms	3 – 4	Alpha-particle scattering (distance of closest approach) and Bohr's model of the hydrogen atom.
Nuclei	3 – 4	Nuclear density, binding energy per nucleon curve, and energy released in fission/fusion.
Semiconductor Electronics	7	p-n junction biasing (V-I characteristics), rectifiers, and the effect of doping on conductivity.

Top 15 Most Asked MCQs from Previous Year Papers (Physics)

Q1. Nuclear Density

Two nuclei have their mass numbers in the ratio **1 : 27**.

What is the ratio of their nuclear densities?

- (a) 1 : 27
- (b) 1 : 1
- (c) 1 : 9
- (d) 1 : 3

Q2. Assertion–Reason (Electric Power in Series)

Assertion (A):

When three electric bulbs of power 200 W, 100 W and 50 W are connected in series to a source, the power consumed by the 50 W bulb is maximum.

Reason (R):

In a series circuit, current is the same through each bulb, but the potential difference across each bulb is different.

- (a) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (b) Both (A) and (R) are true, but (R) is not the correct explanation of (A).
- (c) (A) is true but (R) is false.
- (d) (A) is false and (R) is true.

Q3. Moving Coil Galvanometer

The coil of a moving coil galvanometer is wound over a metal frame in order to:

- (a) Reduce hysteresis
- (b) Increase sensitivity
- (c) Increase moment of inertia
- (d) Provide electromagnetic damping

Q4. RMS and Maximum Current

An ammeter connected in series in an AC circuit reads **10 A**.

The maximum value of current at any instant in the circuit is:

- (a) 102A
- (b) 102A
- (c) 10A
- (d) 102A

Q5. Magnification of Mirror

The magnification produced by a spherical mirror is:

$$m=-2.0$$

The mirror used and the nature of the image formed will be:

- (a) Convex and virtual
- (b) Concave and real
- (c) Concave and virtual
- (d) Convex and real

Q6. Drift Velocity

Two copper wires P and Q of the same cross-sectional area are joined in parallel and connected across a battery of potential difference V.

If the lengths of wires P and Q are in the ratio **1 : 2**, the ratio of drift velocities of electrons in P and Q is:

- (a) 1 : 2
- (b) 2 : 1
- (c) 1 : 1
- (d) 1 : 4

Q7. Magnetic Permeability

Which one of the following has relative magnetic permeability between 0 and 1?

- (a) Aluminium
- (b) Alnico
- (c) Water
- (d) Sodium

Q8. Photoelectric Effect

Photons of energies **1 eV** and **2 eV** are successively incident on a metallic surface of work function:

$$\varphi=0.5 \text{ eV}$$

The ratio of kinetic energy of the most energetic photoelectrons in the two cases will be:

- (a) 1 : 2
- (b) 1 : 1
- (c) 1 : 3
- (d) 1 : 4

Q9. Assertion–Reason (n-type Semiconductor)

Assertion (A):

n-type semiconductor is not negatively charged.

Reason (R):

Neutral pentavalent impurity atom doped in intrinsic semiconductor donates its fifth unpaired electron to the crystal lattice and becomes a positive donor.

- (a) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (b) Both (A) and (R) are true but (R) is not the correct explanation of (A).

- (c) (A) is true but (R) is false.
- (d) (A) is false but (R) is true.

Q10. Displacement Current

Displacement current exists only when:

- (a) Electric field is changing
- (b) Magnetic field is changing
- (c) Electric field is not changing
- (d) Magnetic field is not changing

Q11. Critical Angle

The critical angle for two media A and B having refractive indices:

$$n_A=2.0, n_B=1.0$$

is:

- (a) 0°
- (b) 30°
- (c) 45°
- (d) 60°

Q12. Assertion–Reason (Young's Double Slit Experiment)

Assertion (A):

In Young's double slit experiment, if the separation d between coherent sources and the distance D of the screen from the sources are both reduced to 13, the fringe width remains the same.

Reason (R):

Fringe width is proportional to dD .

- (a) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (b) Both (A) and (R) are true but (R) is NOT the correct explanation of (A).
- (c) (A) is true but (R) is false.
- (d) (A) is false and (R) is also false.

Q13. Assertion–Reason (Hydrogen Atom)

Assertion (A):

The potential energy of an electron revolving in any stationary orbit in a hydrogen atom is positive.

Reason (R):

The total energy of a charged particle is always positive.

- (a) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (b) Both (A) and (R) are true but (R) is not the correct explanation of (A).
- (c) (A) is true but (R) is false.
- (d) Both (A) and (R) are false.

Q14. Reactance Ratio

The ratio of inductive reactance XL to capacitive reactance XC in an AC circuit is:

$$XL = \omega L, XC = 1/\omega C$$

- (a) $2LC$
- (b) LC^2
- (c) LC^2
- (d) $2LC$

Q15. Assertion–Reason (Photoelectric Current)

Assertion (A):

For radiation of frequency greater than the threshold frequency, photoelectric current is proportional to the intensity of radiation.

Reason (R):

Greater the number of energy quanta available, greater is the number of electrons absorbing energy quanta and hence greater is the number of electrons emitted.

- (a) If both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- (b) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
- (c) If Assertion is true but Reason is false.
- (d) If both Assertion and Reason are false.

