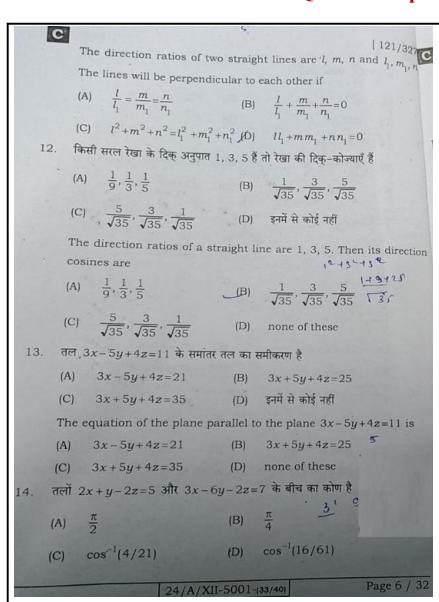
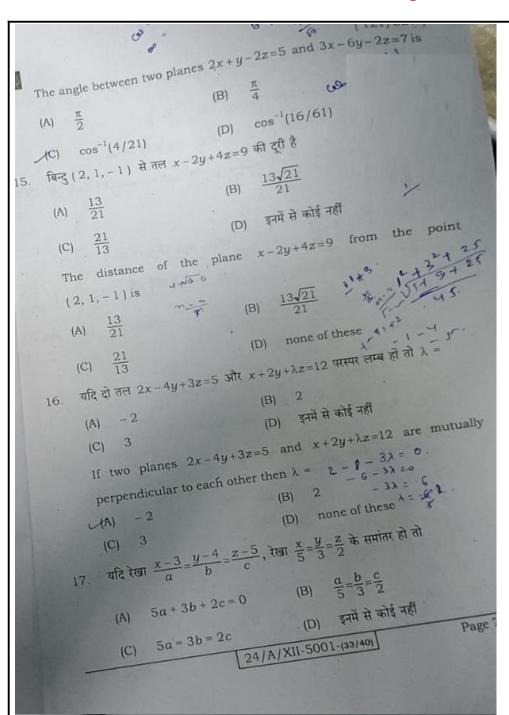
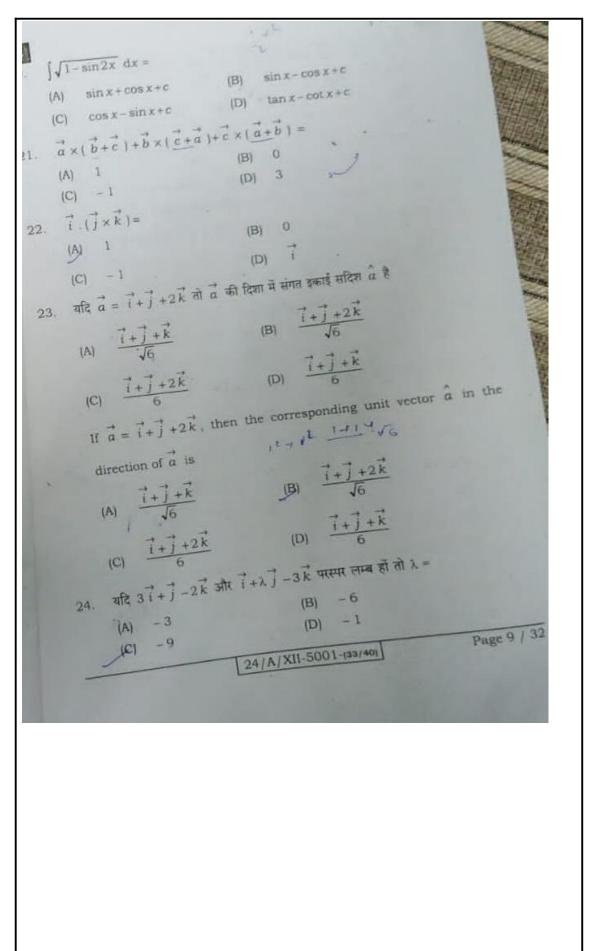


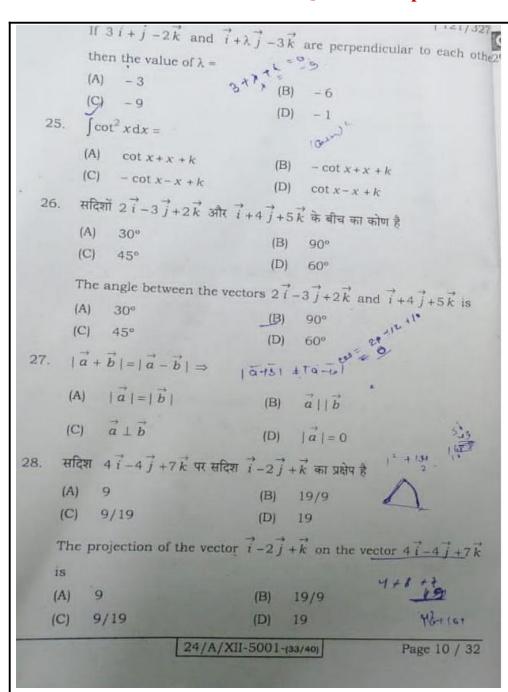
If
$$y=x^{20}$$
 then $\frac{d^2y}{dx^2}=$


(A) x^{18}
(B) $20x^{19}$


$$\int \sqrt{1+\cos 2x} \, dx =$$
(C) $\frac{2}{x^2}+c$
(D) $\sqrt{2}\sin\frac{x}{2}+c$

$$\int \frac{\log x}{\sqrt{x}} \, dx =$$
(A) $\frac{1}{2}(\log x)^2+c$
(B) $-\frac{1}{2}(\log x)^2+c$
(C) $\frac{2}{x^2}+c$
(D) $-\frac{2}{x^2}+c$


$$\int \frac{\cos\sqrt{x}}{\sqrt{x}} \, dx =$$
(A) $2\sin\sqrt{x}+c$
(B) $\sin\sqrt{x}+c$
(C) $\cos\sqrt{x}+c$
(D) $2\cos\sqrt{x}+c$


$$\int \sqrt{\cos x} \sin x \, dx =$$
(A) $\frac{2}{3}(\cos x)^{3/2}+c$
(B) $-\frac{2}{3}(\cos x)^{3/2}+c$
(C) $(\cos x)^{3/2}+c$
(D) $-(\cos x)^{3/2}+c$
(D) $-(\cos x)^{3/2}+c$
(E) $-\frac{2}{3}(\cos x)^{3/2}+c$
(C) $(\cos x)^{3/2}+c$
(D) $-(\cos x)^{3/2}+c$
(D) $-(\cos x)^{3/2}+c$
(E) $-\frac{2}{3}(\cos x)^{3/2}+c$
(C) $(\cos x)^{3/2}+c$
(D) $-(\cos x)^{3/2}+c$
(D) $-(\cos x)^{3/2}+c$
(E) $-\frac{2}{3}(\cos x)^{3/2}+c$
(E) $-\frac{2$

C If the line $\frac{x-3}{a} = \frac{y-4}{b} = \frac{z-5}{c}$ is parallel to the line $\frac{x}{5} = \frac{y}{3} = \frac{z}{2}$, then $\frac{z}{2}$ (A) 5a + 3b + 2c = 0 (B) $\frac{a}{5} = \frac{b}{3} = \frac{c}{2}$ (C) 5a = 3b = 2c (D) none of these 18. यदि रेखा $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}$, तल $a_2x+b_2y+c_2z+d=0$ के समांतर हो तो (A) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ (B) $a_1 x + b_1 y + c_1 z = 0$ (C) $a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$ (D) इनमें से कोई नहीं If the line $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}$ is parallel to the plane $a_2x+b_2y+c_2z+d=0$, then (A) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ (B) $a_1 x + b_1 y + c_1 z = 0$ (C) $a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$ (D) none of these 19. $\overline{4}$ $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} -6 & 2 \\ 18 & 6 \end{vmatrix}$ हो तो x बराबर है 6. (A) 6 (B) ±6 (C) - 6(D) 0 If $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$ then x is equal to (B) ±6 (D) 0 (C) - 6 Page 8 / 32 24/A/XII-5001-(33/40)

[121/3

32.
$$\overline{A} = \begin{bmatrix} 3 & 6 \\ -5 & 4 \end{bmatrix}$$
 और $\overline{B} = \begin{bmatrix} 7 & 8 \\ 5 & 6 \end{bmatrix}$ तो $6A - 5B = \begin{bmatrix} 7 & 8 \\ 5 & 6 \end{bmatrix}$

(A)
$$\begin{bmatrix} 17 & 4 \\ 5 & 54 \end{bmatrix}$$
 $\begin{bmatrix} 14 & -4 \\ -55 & -6 \end{bmatrix}$ (B) $\begin{bmatrix} 17 & -4 \\ 5 & 54 \end{bmatrix}$

(C)
$$\begin{bmatrix} -17 & -4 \\ -55 & -6 \end{bmatrix}$$
 (D) $\begin{bmatrix} 17 & -4 \\ -55 & -54 \end{bmatrix}$

(D)
$$\begin{bmatrix} 17 & -4 \\ -55 & -54 \end{bmatrix}$$

If
$$A = \begin{bmatrix} 3 & 6 \\ -5 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 7 & 8 \\ 5 & 6 \end{bmatrix}$ then $6A - 5B =$

(A)
$$\begin{bmatrix} 17 & 4 \\ 5 & 54 \end{bmatrix}$$
 (B) $\begin{bmatrix} 17 & -4 \\ 5 & 54 \end{bmatrix}$

(B)
$$\begin{bmatrix} 17 & -4 \\ 5 & 54 \end{bmatrix}$$

(C)
$$\begin{bmatrix} -17 & -4 \\ -55 & -6 \end{bmatrix}$$
 (D) $\begin{bmatrix} 17 & -4 \\ -55 & -54 \end{bmatrix}$

(D)
$$\begin{bmatrix} 17 & -4 \\ -55 & -54 \end{bmatrix}$$

33. यदि
$$A = \begin{bmatrix} 2 & \sqrt{2} & 0 \\ 3 & -2 & \frac{2}{5} \end{bmatrix}$$
 तो $A' =$

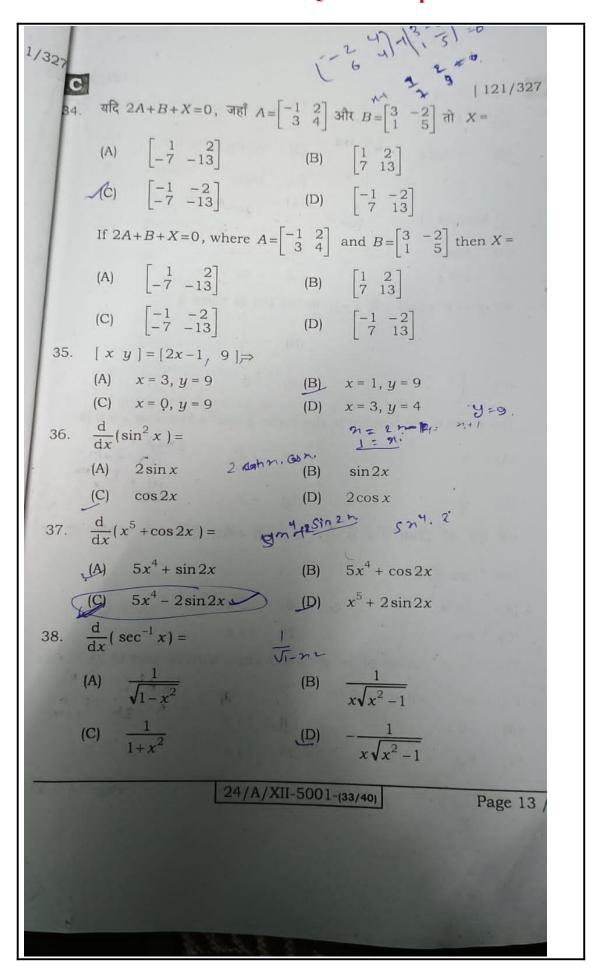
(A)
$$\begin{bmatrix} \sqrt{2} & -3 \\ \sqrt{2} & 2 \\ 0 & 2/5 \end{bmatrix}$$
 (B) $\begin{bmatrix} 2 & 3 \\ \sqrt{2} & -2 \\ 0 & 2/5 \end{bmatrix}$

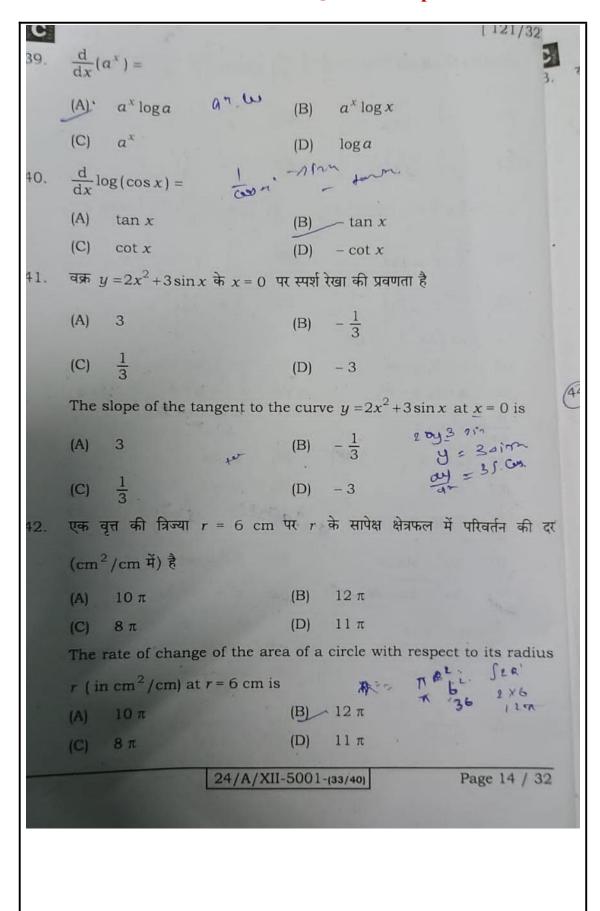
(B)
$$\begin{bmatrix} \frac{2}{\sqrt{2}} & 3\\ 0 & 2/5 \end{bmatrix}$$

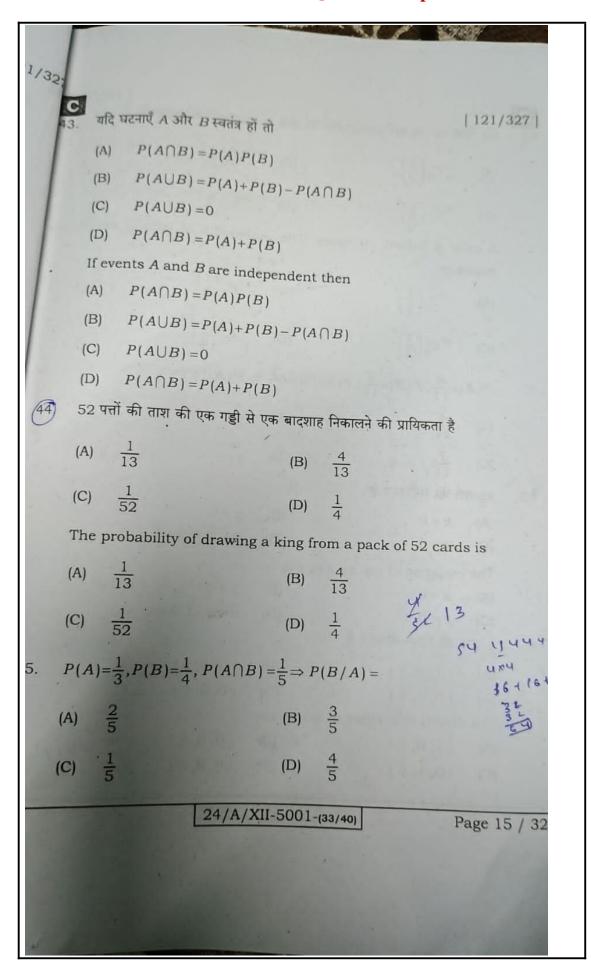
(C)
$$\begin{bmatrix} 3 & 2 \\ -2 & \sqrt{2} \\ -2/5 & 0 \end{bmatrix}$$
 (D) $\begin{bmatrix} 3 & -2 & 2/5 \\ 2 & \sqrt{2} & 0 \end{bmatrix}$

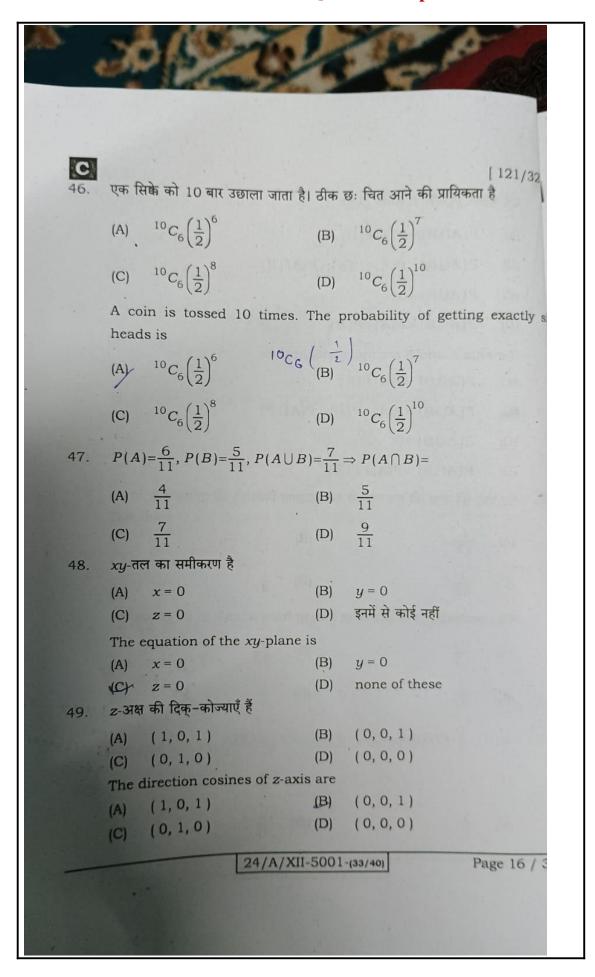
(D)
$$\begin{bmatrix} 3 & -2 & 2/5 \\ 2 & \sqrt{2} & 0 \end{bmatrix}$$

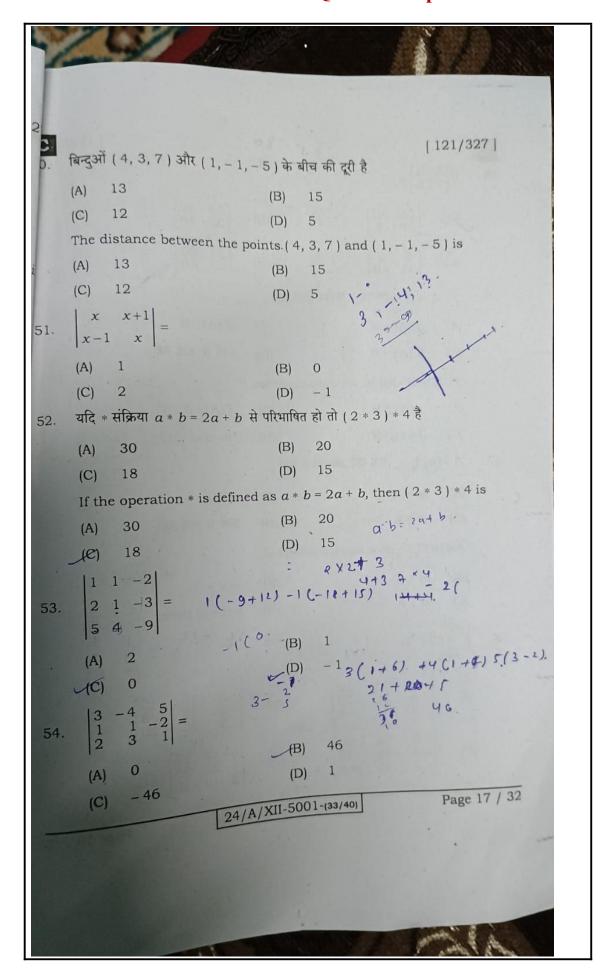
If
$$A = \begin{bmatrix} 2 & \sqrt{2} & 0 \\ 3 & -2 & \frac{2}{5} \end{bmatrix}$$
 then $A' =$

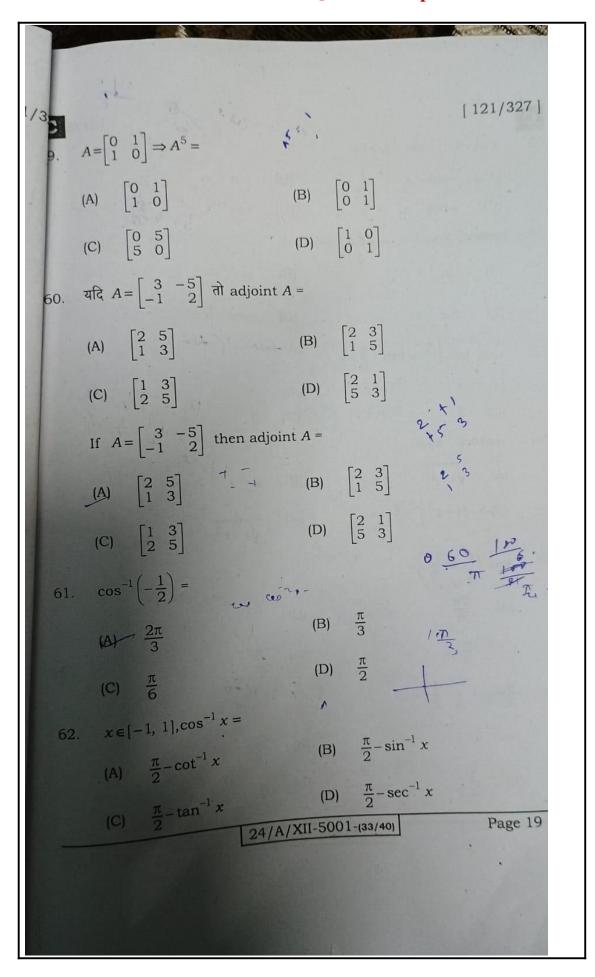

(A)
$$\begin{bmatrix} \frac{2}{\sqrt{2}} & -3\\ 0 & 2/5 \end{bmatrix}$$
 (B) $\begin{bmatrix} \frac{2}{\sqrt{2}} & 3\\ 0 & 2/5 \end{bmatrix}$

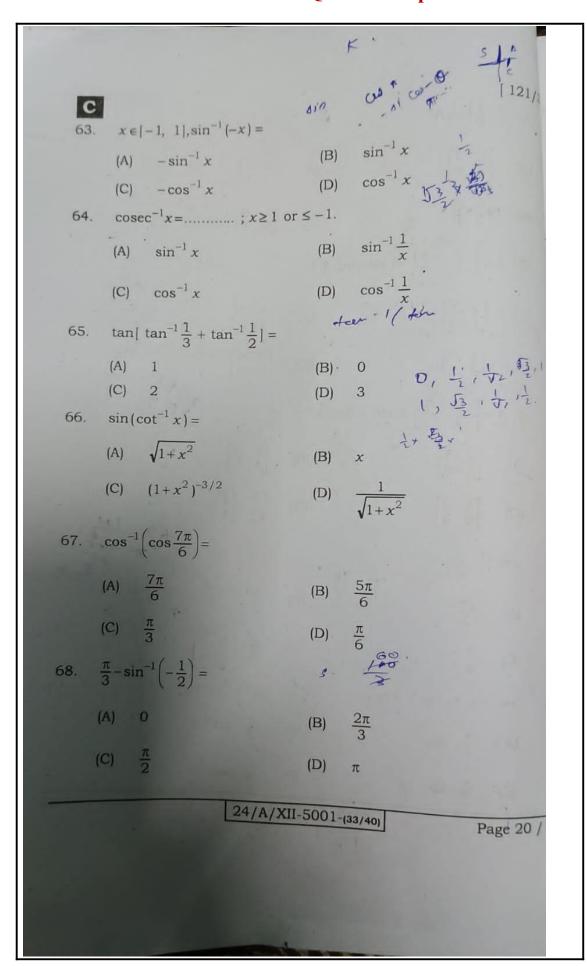

(B)
$$\begin{bmatrix} \frac{2}{\sqrt{2}} & 3\\ \sqrt{2} & -2\\ 0 & 2/5 \end{bmatrix}$$


(C)
$$\begin{bmatrix} 3 & 2 \\ -2 & \sqrt{2} \\ -2/5 & 0 \end{bmatrix}$$
 (D) $\begin{bmatrix} 3 & -2 & 2/5 \\ 2 & \sqrt{2} & 0 \end{bmatrix}$


(D)
$$\begin{bmatrix} 3 & -2 & 2/5 \\ 2 & \sqrt{2} & 0 \end{bmatrix}$$


24/A/XII-5001-(33/40)





55.
$$5\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = 25 \text{ } 30 \text{ } 30 \text{ } 35 \text{ } 80 \text{ } 30 \text{ } 35 \text{ } 80 \text{ } 30 \text{ } 35 \text{ } 80 \text{ } 30 \text{ } 35 \text{ } 80 \text{ } 30 \text{ } 35 \text{ } 80 \text{ } 30 \text{ } 35 \text{ } 80 \text{ } 30 \text{ } 30 \text{ } 35 \text{ } 80 \text{ } 30 \text{ } 30 \text{ } 35 \text{ } 80 \text{ } 30 \text{ } 30$$

|
$$\tan^{-1}\sqrt{3} - \sec^{-1}\{-2\} =$$
 | $\tan^{-1}\sqrt{3} - \sec^{-1}\{-2\} =$ | $\tan^{-1}\sqrt{3} - \sec^{-1}(-2) =$ | $\tan^{-1}\sqrt{3} - \csc^{-1}(-2) =$

$$(A) \cot x - \tan x + c \qquad (B) \cot x - \cot x + c$$

$$(C) - \cot x - \tan x + c \qquad (D) - \tan x + c$$

$$(A) \frac{x^3}{x^2 + 1} dx = \int_{2x^2 + 1}^{x^2 + 1} dx = \int_{2x^2 +$$

अवकल समीकरण $xy\left(\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\right) + x\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 - y\frac{\mathrm{d}y}{\mathrm{d}x} = 0$ की कोटि और घात है (A) कोटि = 2, घात = 1 (B) कोटि = 2, घात = 2 (C) कोटि = 1, घात = 2 (D) कोटि = 1, घात = 1 The order and degree of the differential equation $xy\left(\frac{d^2y}{dx^2}\right) + x\left(\frac{dy}{dx}\right)^2 - y\frac{dy}{dx} = 0$ is (A) order = 2, degree = 1
 (B) order = 2, degree = 2
 (C) order = 1, degree = 2
 (D) order = 1, degree = 1 32. अवकल समीकरण $\frac{dy}{dx} + 2y = \sin x$ का समाकलन गुणक है (A) e^x (B) e^{3x} (C) e^{2x} The integrating factor of the differential equation $\frac{dy}{dx} + 2y = \sin x$ is (A) e^x (B) e^{3x} (C) e^{2x} (D) e^{4x} 83. अवकल समीकरण $\frac{dy}{dx} = e^{x+y}$ का हल है (B) $e^{x} + e^{y} = c$ (D) $e^{-x} + e^{-y} = c$ The solution of the differential equation $\frac{dy}{dx} = e^{x+y}$ is

(A) $e^x + e^{-y} = c$ (B) $e^x + e^y = c$ (B) $e^x + e^y = c$ (B) $e^x + e^y = c$ (C) $e^x + e^y = c$ (B) $e^x + e^y = c$ (C) $e^x + e^y = c$ (D) $e^x + e^y = c$ (E) $e^x + e^y = c$ (D) $e^x + e^y = c$ (E) $e^x + e^y = c$

84. अवकल संगीकरण
$$\frac{dy}{dx} = \frac{y}{x}$$
 का हल है

(A) $y = \log |x| + c$ (B) $y = cx$

(C) $y = x \log |x| + cx$ (D) $y = \log |x| + cx$

The solution of differential equation $\frac{dy}{dx} = \frac{y}{x}$ is

(A) $y = \log |x| + c$ (B) $y = cx$

(C) $y = x \log |x| + cx$ (D) $y = \log |x| + cx$

85. अवकल संगीकरण $\frac{dy}{dx} + 2y = e^{3x}$ का समाकलन गुणक है

(A) e^{3x} (B) e^{2x}

(C) e^{x} (D) e^{4x}

The integrating factor of the differential equation $\frac{dy}{dx} + 2y = e^{3x}$ is

(A) e^{3x} (B) e^{2x}

(C) e^{x} (D) e^{4x}

(C) e^{x} (D) e^{4x}

86. $(4\vec{i} + 3\vec{j} + 3\vec{k}) \cdot (6\vec{i} - 4\vec{j} + \vec{k}) = (A)$

(A) $(4\vec{i} + 3\vec{j} + 3\vec{k}) \cdot (6\vec{i} - 4\vec{j} + \vec{k}) = (A)$

(B) $(4\vec{i} + 3\vec{j} + 3\vec{k}) \cdot (6\vec{i} - 4\vec{j} + \vec{k}) = (A)$

(B) $(4\vec{i} + 3\vec{j} + 3\vec{k}) \cdot (6\vec{i} - 4\vec{j} + \vec{k}) = (A)$

(C) $(2\vec{i} + 3\vec{j} + 3\vec{k}) \cdot (6\vec{i} - 4\vec{j} + \vec{k}) = (A)$

(B) $(4\vec{i} + 3\vec{j} + 3\vec{k}) \cdot (6\vec{i} - 4\vec{j} + \vec{k}) = (A)$

(B) $(4\vec{i} + 3\vec{j} + 3\vec{k}) \cdot (6\vec{i} - 4\vec{j} + \vec{k}) = (A)$

(B) $(4\vec{i} + 3\vec{j} + 3\vec{k}) \cdot (6\vec{i} - 4\vec{j} + \vec{k}) = (A)$

(B) $(4\vec{i} + 3\vec{j} + 3\vec{k}) \cdot (6\vec{i} - 4\vec{j} + \vec{k}) = (A)$

(C) $(4\vec{i} + 3\vec{j} + 3\vec{k}) \cdot (6\vec{i} - 4\vec{j} + \vec{k}) = (A)$

(B) $(4\vec{i} + 3\vec{j} + 3\vec{k}) \cdot (6\vec{i} - 4\vec{j} + \vec{k}) = (A)$

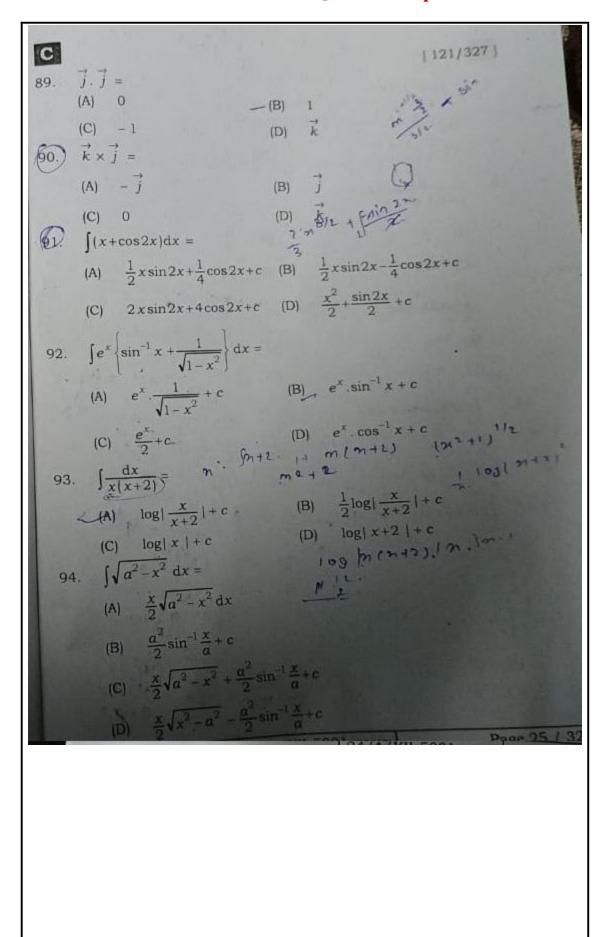
(B) $(4\vec{i} + 3\vec{j} + 3\vec{k}) \cdot (6\vec{i} - 4\vec{j} + \vec{k}) = (A)$

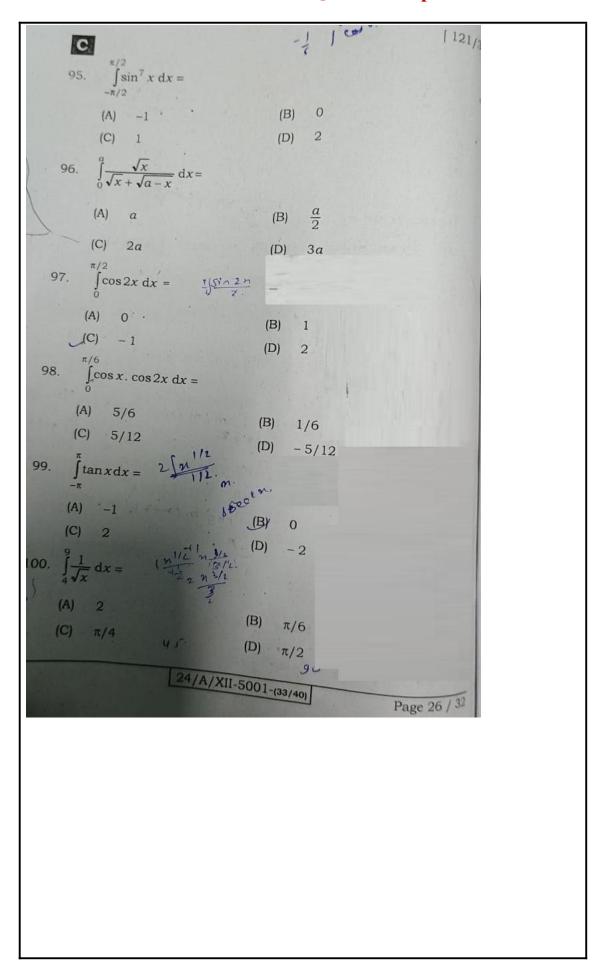
(B) $(4\vec{i} + 3\vec{j} + 3\vec{k}) \cdot (6\vec{i} - 4\vec{j} + \vec{k}) = (A)$

(C) $(4\vec{i} + 3\vec{j} + 3\vec{k}) \cdot (6\vec{i} - 4\vec{j} + \vec{k}) = (A)$

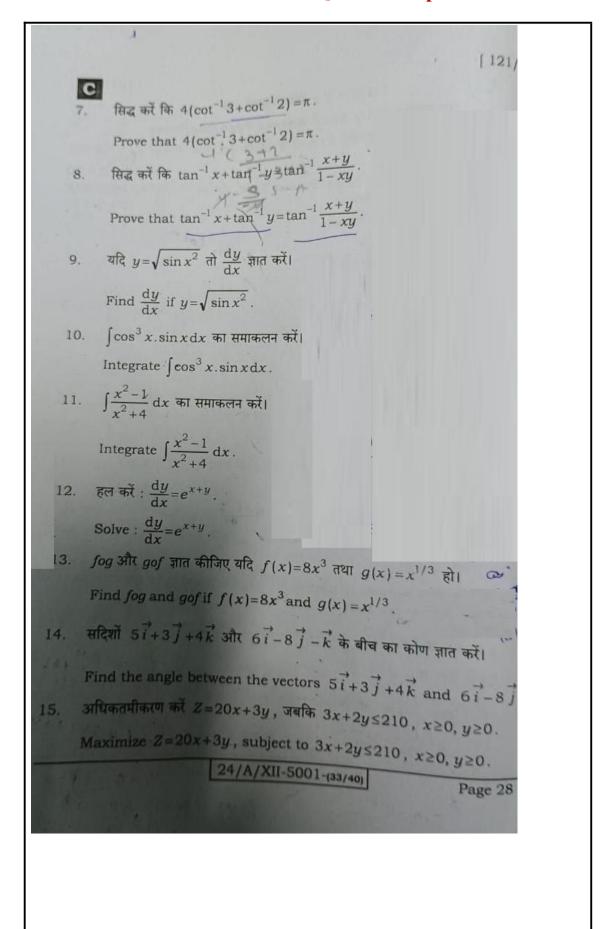
(D) $(4\vec{i} + 3\vec{j} + 3\vec{k}) \cdot (6\vec{i} - 4\vec{j} + 3\vec{k}) = (A)$

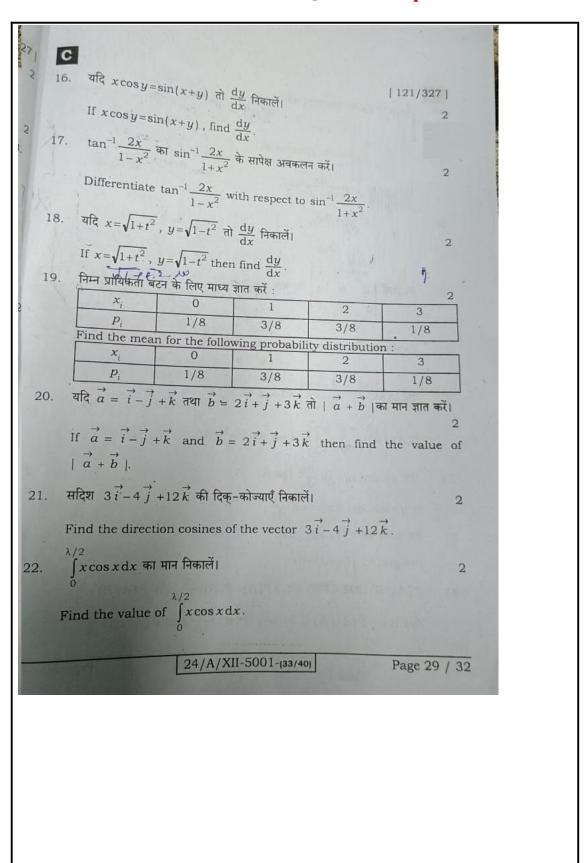
(D) $(4\vec{i} + 3\vec{j} + 3\vec{k}) \cdot (6\vec{i} + 3\vec{i} + 3\vec{k}) = (A)$

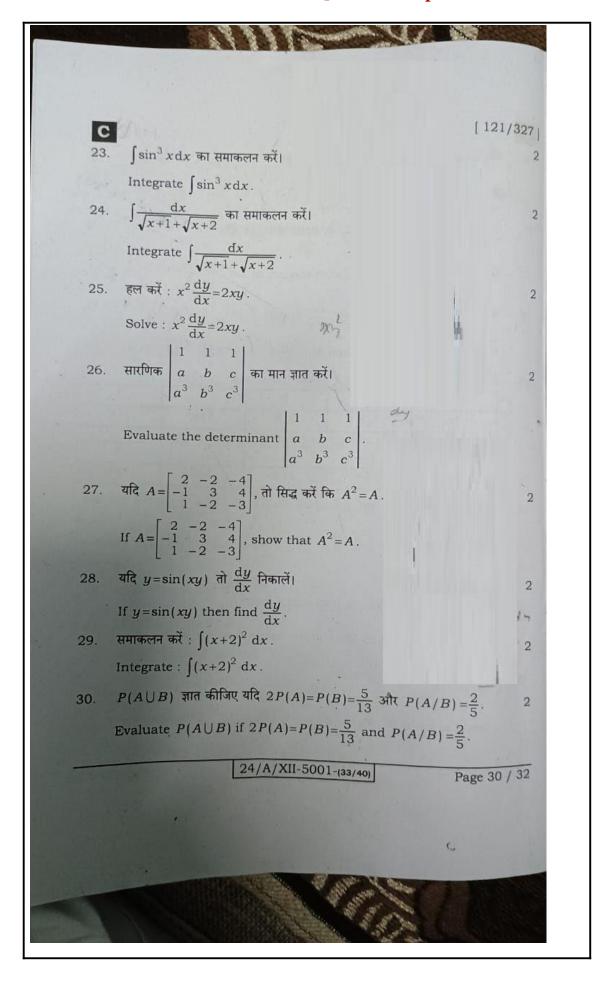

(D) $(4\vec{i} + 3\vec{i} + 3\vec{i} + 3\vec{k}) \cdot (6\vec{i} + 3\vec{i} + 3\vec{k}) = (A)$

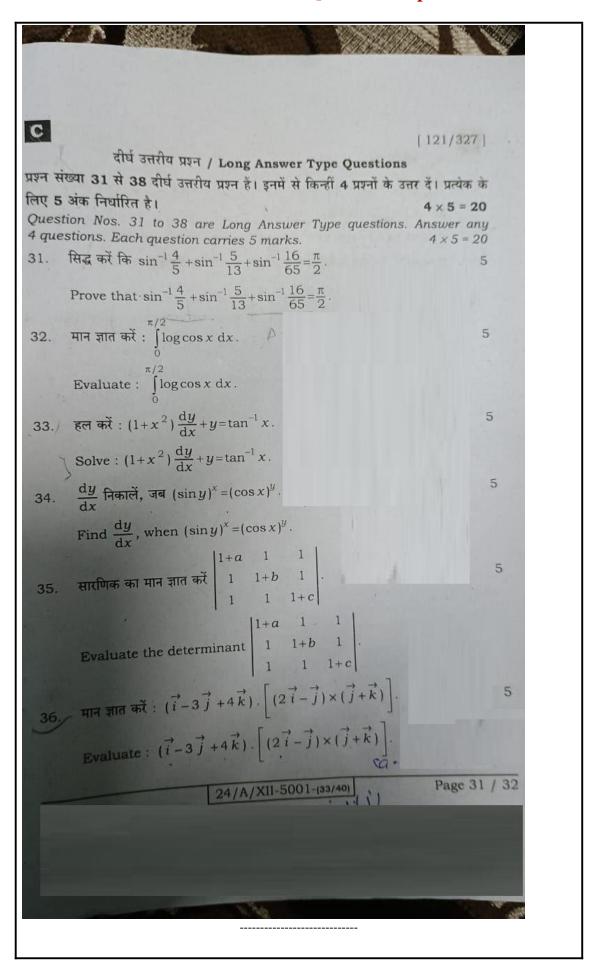

(D) $(4\vec{i} + 3\vec{i} + 3\vec{i} + 3\vec{k}) \cdot (6\vec{i} + 3\vec{i} + 3\vec{k}) = (A)$

(D) $(4\vec{i} + 3\vec{i} + 3\vec{i} + 3\vec{k}) \cdot (6\vec{i} + 3\vec{i} + 3\vec{k}) = (A)$


(D) $(4\vec{i} + 3\vec{i} + 3\vec{i} + 3\vec{k}) \cdot (6\vec{i} + 3\vec{i} + 3\vec{k}) = (A)$


(D) $(4\vec{i} + 3\vec{i} + 3\vec{i} + 3\vec{k}) \cdot (6\vec{i} + 3\vec{i} + 3\vec{$





C	
लघु उत्तरीय प्रश्न / SECTION - B	[121/327]
लघु उत्तरीय प्रश्न / SECTION - B प्रश्न संख्या 1 से 30 तक लघु उत्तरीय हैं। इनमें से किन्हीं 15 प्रश्नों के Question Nos. 1 to 30 are Short A Each question	ions
Question Nos 1	उत्तर दें। प्रत्येक प्रश्न
Question Nos. 1 to 30 are Short Answer Type. Answer of $y = x^{\sin x}$ ती $\frac{dy}{dx}$ निकालें।	15 × 2 = 30 any 15 questions.
dr	15 × 2 = 30 2
If $y = x^{\sin x}$, find $\frac{dy}{dx}$.	2
2. $\int_{0}^{\lambda/2} \frac{dx}{1+\sqrt{\tan x}} $ का मान निकालें। Find the value of $\int_{0}^{\lambda/2} \frac{dx}{1+\sqrt{\tan x}}$	
0 1+√tanx ना नान निकाल।	. 2
Find the value of $\int_{-\infty}^{\lambda/2} dx$	
$\int_{0}^{a} \sqrt{a^{2} + x^{2}} dx$	
है । यर का मान निकाले।	. 2
Find the value of $\int_{0}^{a} \sqrt{a^2 - x^2} dx$.	
तलों $x-2y+2z=6$ और $3x-6y+6z=2$ के बीच की दूरी ज्ञार	
Find the distance between the planes $x-2$ $3x+6y+6z=2$.	त करें। 2 $2y+2z=6$ and
उस तल का समीकरण जात को विपने	
उस तल का समीकरण ज्ञात करें जिसके x , y और z अक्षों पर 2 , 3 और -4 हैं।	
Find the equation of the plane whose intercepts of x, y, z are respectively 2, 3 and -4.	on the axes of
p का मान ज्ञात करें जिसमें रेखाएँ $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z+17}{p}$ और $\frac{x+1}{2}$	4 <i>u</i> +9 2 1
परस्पर लम्ब हों। 2 3 p जार 2	$=\frac{3}{2}=\frac{2-1}{2}$
Find the value of	2
Find the value of p so that the lines $(x-1)^{i} = \frac{y-1}{2}$	$\frac{2}{p} = \frac{z+17!}{p}$ and
$\frac{x+4}{2} = \frac{y+9}{2} = \frac{z-1}{2}$ are mutually perpendicular.	
24/A/XII-5001-(33/40)	Page 27 / 32
B U.s.	A

