

ADDITIONAL PRACTICE QUESTIONS

Physics-Theory (Marking Scheme)

Class XII | 2023–24

Maximum marks: 70

Time Allowed: 3 hours

General instructions:

Q.No			Answers	Marks
		SE	CTION A	
1	C. 2.4×10^{-5} J			1
2	A. 14.4×10^{-15} N			1
3	B. y-intercept			1
4	kinetic energy	potential energy		1
	C decreases	increases		
5	C. Current I cannot direction.	t have a magnitud	le of more than 15 A in the upward	1
6	B. only P and R			1
7	B. $B_3 < B_1 < B_2$			1
8	C. E \parallel B and the pa	rticle has an initi	al velocity along the electric field	1
9	A. only I			1
10	D. 5 x 10^4 Vm ⁻¹ s ⁻¹			1
11	A. only P			1
12	в.			1
13	D. Both Assertion a	and Reason are fa	ılse.	1
14	B. Assertion and ReAssertion.	eason are true bu	t Reason is NOT the correct explanation of	1
15	A. Both assertion a assertion.	nd reason are true	e and reason is the correct explanation for	1
16	C. Assertion is true	e but Reason is fa	lse.	1
		SE	CTION B	
17	When an intrinsic s number of electron electrons. (0.5 mark	semiconductor is s increases much ks)	doped with pentavalent impurities, the more than the thermally produced	2
	This causes the the generated, thereby	rmally generated decreasing the nu	holes to recombine with the electrons umber of holes. (1 mark)	

	$\frac{\frac{1}{f_2}}{f_2} = (n_{21} - 1) \left(\frac{1}{\infty} - \frac{1}{-R}\right)$ $f_2 = \frac{R}{n_{21} - 1} \qquad (0.5 \text{ marks})$	
	$f_1: f_2 = -1:1 \ (0.5 \ marks)$	
20	(a) Since the wires are connected in parallel, the potential difference 'V' across both wires will be the same. The wires have the same resistivity ρ Let the length of wires P and Q be L ₁ and L ₂ respectively. Let the drift velocities electrons in wires P and Q be v _{d1} and v _{d2} respectively. I = neAv _d (0.5 marks) v _d - drift velocity L ₁ /L ₂ = 1/2 V = RI = (ρ L/A) I For wire P: V = (ρ L ₁ /A) neAv _{d1} (i) (0.5 marks) For wire Q: V = (ρ L ₂ /A) neAv _{d2} (ii) (0.5 marks) Equating (i) and (ii) L ₁ v _{d1} = L ₂ v _{d2} v _{d1} /v _{d2} = L ₂ /L ₁ v _{d1} /v _{d2} = 2/1 Hence, the ratio of drift velocities of electrons in wires P and Q is 2:1.(0.5 marks)	2
21	Concave lens should be placed before the convex lens. (1 mark) The distance between the lenses should be f_2 - f_1 , where f_2 is the focal length of the convex lens and f_1 is the focal length of the concave lens. (1 mark) (OR)	2

			Amr
23	(a) Given $E = 10 \text{ V/m}$	3	
	$\mathbf{v}_{\mathrm{x}} = 10 \mathrm{v}$ $\Delta \mathbf{r} = 2 \mathrm{m}$		
	$ \vec{\Delta V} = \vec{E} \vec{\Delta r}$		
	= 10 x 2 = 20 V (0.5 marks)		
	Since, the potential decreases in the direction of the electric field, the potential at surface Y will be more than the potential at surface X. V = 20 + 10 = 30V (0.5 marks)		
	(b) Given: $q = 2 C$ Work done in moving charge from Y to X along Path $1 = (V_x - V_y)q$ $W = (10 - 30) \times 2$ $W = -20 \times 2 = -40 J$ (1 mark)		
	Work done in moving charge along Path 2 will be the same as work done along Path 1. (0.5 marks) This is because the work done between two surfaces is independent of the path since the force acting on the charge is conservative in nature. (0.5 marks)		
24	(a) $\lambda = 2\pi r/n \ (0.5 \ marks)$	3	
	If $n = 3$, $\lambda = \text{circumference } /3 \ (0.5 \ marks)$		
	(b) $\lambda = 2\pi r/n$ Since $r \propto n^2/Z$ $\lambda \propto n/Z$ (0.5 marks)		
	(i) For the third orbit of He atom, n/Z = 3/2		
	(ii) For the fourth orbit of He atom, n/Z = 4/2 = 2		
	(iii) For the third orbit of Li atom n/Z = 3/3 = 1		
	(iv) For the sixth orbit of Be atom n/Z = 6/4 = 3/2		
	(1 mark for correct calculation of all n/Z)		
	Therefore, an electron in the third orbit of He atom will have the same de Broglie wavelength as the electron in the sixth orbit of Be atom. (0.5 marks) (Full marks will be awarded if calculations are done based on velocity of electrons.)		

			Amrit M
25	Give 0.5 marks for the correct representation of current in the circuits.	3	
	$P \xrightarrow{I_1} 4\Omega \xrightarrow{Q} M \xrightarrow{I_2 + I_1} R$		
	ξ2Ω		
	6V		
	By using Kirchhoff's second law for closed-loop PQS we get - $4I_1 + 2I_2 + 10 = 0$		
	$4I_1 - 2I_2 = 10$		
	$2I_1 - I_2 = 5(i)$ (0.5 marks)		
	By using Kirchhoff's second law for closed-loop QRS we get $(I_1 + I_2)I_1 + 6 = 2I_2 = 0$		
	$I_1 + 3I_2 = 6(ii)$ (0.5 marks)		
	solving (i) and (ii), we get		
	$/I_1 = 21$ $\therefore I_2 = 21/7 = 3 \text{ A}$ (0.5 marks)		
	$I_2 = 1 A$ (0.5 marks)		
	$I_1 + I_2 = 3 + 1 = 4 A (0.5 marks)$		
	Inerefore, the current across 4 Ω resistor is 5 A, across 2 Ω resistor is 1 A, and across 1 Ω resistor is 4 A.		
26	(a) For a charged particle executing a circular path, $\theta = 90^{\circ}$	3	
	$\therefore \mathbf{F} = \mathbf{q}\mathbf{v}\mathbf{B} \qquad (0.5 \text{ marks})$		
	Since the charged particle executes a circular path		
	$mv^{2}/r = qvB$ q/m = v/rB (0.5 marks)		
	Since, v and B are constant for both the particles, $q/m \propto 1/r$		
	q/m: charge-to-mass ratio As $r > r$, partials A has a greater sharge to mass ratio than P (1 mark)		
	As $I_B > I_A$, particle A has a greater charge-to-mass ratio than B. (1 mark)		
	(b) A proton has a greater charge-to-mass ratio than an alpha particle.		
	(0.5 marks) Hence particle A is likely to be a proton $(0.5 marks)$		
27	(a) Their frequencies will be different.	3	
	A radio wave is an EM wave and an infrasonic wave is a sound wave. Since they have different speeds in air, their frequencies are different.		
	(or) $f = v/\lambda$; since they have different speeds in air, they will have different frequencies.		

	(1 mark for the correct answer. No marks will be awarded if reason is not written.)	
	(b) Frequency of electric field = frequency of magnetic field = $60 \text{ kHz} (0.5 \text{ marks})$	
	$E_{\rm rms} = c \ B_{\rm rms}$	
	$E_{\rm rms} = 3 \times 10^8 \times 8 \times 10^{-9} = 2.4 \ {\rm V/m}$	
	(I mark for the correct answer with the unit. Accept any correct unit.)	
	Direction of electric field - along the horizontal north-south line. (0.5 marks)	
28	(a) Maximum induced emf (ε_{max}) = N × B × A × ω (0.5 marks) where, N = 50, B = 0.4 T, $\omega = 2\pi f = 2 \times \pi \times 60$, r = d/2 = 0.2/2 = 0.1 m	3
	Therefore, $A = \pi r^2 = \pi \times (0.1)^2$ (0.5 marks)	
	Substituting we get,	
	$\varepsilon_{\text{max}} = 50 \times 0.4 \times (3.14 \times 0.1 \times 0.1) \times (2 \times 3.14 \times 60)$ - 236.63 V	
	(0.5 marks each for the substitution and final answer.)	
	(b) if the ring is rotated about its axis	
	or	
	the ring is translated in the magnetic field	
	(1 mark for any one correct answer)	
	[Accept any other valid correct answer.]	
OR	$I_{p} = \left[\frac{\mu_{o}\mu_{r}N_{p}^{2}A_{p}}{1}\right] = \left[\frac{\mu_{o}\times1\times(200)^{2}\times A}{1}\right]$	3
	$-p = l = l_p = 1 = l = l = 1$	
	$L_q = \left[\frac{\mu_o \times 500 \times (50)^2 \times A}{I_q}\right] = \left[\frac{\mu_o \times 500 \times (50)^2 \times A}{I}\right]$	
	$\left[\frac{L_p}{L}\right] = \left[\frac{200^2}{500 \times 50^2}\right]$	
	= 0.032	
	Therefore	
	$I = \Gamma^{L_p}$	
	$L_q = \lfloor \frac{0.032}{0.032} \rfloor$	
	$= [\frac{1}{0.032}]$ $L_a = 62.5mH$	
	(1 mark for correct formula. 0.5 marks for substitution. 0.5 mark for the calculation. 1 mark for the correct answer)	
	SECTION D	
29	(a) No, Fatima cannot charge the battery of a phone by connecting it directly to	4
	ac power supply. (0.5 marks) The mobile devices require a 5V DC to get charged. Connecting the battery	

	/
$\sin r_1 = \sin \theta / n \ (0.5 \ marks)$	
$\mathbf{r}_2 = \mathbf{A} - \mathbf{r}_1 = 90 - \mathbf{r}_1 (0.5 \ marks)$	
At the second interface,	
$\sin r_2 = \sin 90/n$	
$\sin r_2 = 1/n \ (0.5 \ marks)$	
$\sin (90 - r_1) = 1/n$	
$\cos r_1 = 1/n \ (0.5 \ marks)$	
Squaring both sides $\cos^2 r_1 = 1/n^2$	
$1 - \sin^2 r_1 = 1/n^2$	
$1 - (\sin^2\theta/n^2) = 1/n^2$	
Solving, $n = v(1+\sin^2\theta) (1 \text{ mark})$	
(b) For an equilateral prism $A = 60^{\circ} (0.5 marks)$	
Using Snell's law at the first surface.	
$\sin i = n \sin r (0.5 marks)$	
At minimum deviation $r = A/2 = 60/2 = 30^{\circ} (0.5 \text{ marks})$	
$\sin i = n \sin(30)$	
$\sin i = n(1/2)$	
$i = \sin^{-1}(n/2)$ (0.5 marks)	
OR (a) The bright fringes will appear less bright because the intensity of light from one of the slits is reduced. (1 mark)	rom 5
The dark fringes will appear less dark/brighter because the intensity of light from the two slits is not the same and the intensities do not completely cance each other out. (1 mark)	el
(b) (i) $\lambda = 500 \text{ nm} = 500 \text{ x} 10^{-9} \text{ m}$; D = 2 m; d= 1 mm = 1 x 10 ⁻³ m	
Width of central maximum = $2\lambda D/d$ (0.5 marks) =2 x 500 x 10 ⁻⁹ x 2/(1 x 10 ⁻³) = 2 mm (0.5 marks)	
(ii) Since the wavelength of red light is more the green light and the width of the central maximum is directly proportional to wavelength, the width of the central maximum will increase when red light is used. (1 mark for full answ	of e ver.)
(c) (i) Increase slit width, so that the slit width is comparable to the wavelen of sound. (0.5 marks)	ıgth
(ii) Replace the screen with a sound detector. (0.5 marks)	

			Aza Amri
	$C_{net} = 4 + 6 = 10 \mu\text{F} \qquad (1 mark)$		
	(b) We know that $C = Q/V$		
	Charge on C ₄ $Q_{1} = 10 \times 6 = 60 \times C_{1} = (0.5 \text{ mg/m})$		
	$Q_4 = 10 \times 6 = 60 \mu C$ (0.5 marks)		
	Net capacitance of C_1 and $C_3 = 6 + 6 = 12 \mu\text{F}$		
	Net capacitance of C_1 , C_3 , and C_2 is :		
	1/C = 1/12 + 1/6 = 3/12 = 1/4		
	$C = 4 \ \mu F$		
	Net charge across C ₁ , and C ₂ , and C ₂		
	$O = C V = A \times 10 = A0 \ \mu C (0.5 \ marks)$		
	$Q = C V = 4 \times 10 = 40 \mu C (0.5 \mu m m m s)$		
	Since the charge in the series combination is the same,		
	Net charge across C_1 and $C_3 = 40 \ \mu C$ (0.5 marks)		
	Potential across C_1 and $C_3 = Q/C = 40/12 = 10/3$ V		
	Charge across C ₁		
	$Q_1 = C_1 \times V = 6 \times 10/3 = 20 \ \mu C \ (0.5 \ marks)$		
	Ratio of charges across C ₁ and C ₄		
	$Q_1/Q_4 = 20/60 = 1:3$ (1 mark)		
33	(a) $X_L = 2\pi f L$ (0.5 marks)	5	
	$\mathbf{L} = \mathbf{X}_{\mathbf{L}} / 2\pi \mathbf{f}$		
	$L = 20/(2 \times 3.14 \times 100) = 0.032 \text{ H} (0.5 \text{ marks})$		
	(b) A battery is a source of direct current and thus $I = 0$ Hz. (0.5 marks)		
	As $X_L = 2\pi i L$, the inductive reactance of the inductor becomes zero. (0.5 marks)		
	inarks)		
	(c) $P_{avg} = V_{rms} I_{rms} \cos \varphi$		
	where φ is the phase difference between current and voltage in the circuit.		
	Phase difference is 90° for pure inductive circuit. (0.5 marks)		
	$\therefore P_{avg} = 0 \ (0.5 \ marks)$		
	(d) Power dissipated in an LCP circuit is maximum when $\mathbf{V}_{t} = \mathbf{V}_{t}$		
	(d) Power dissipated in an LCK circuit is maximum when $A_L - A_C$ f = $1/2\pi\sqrt{(I_C)}$		
	$f = 0.398 \times 10^3 \text{ Hz}$		
	f = 398 Hz (1 mark)		
	Under this condition of resonance, the circuit behaves as a pure resistive circuit.		
	Hence phase difference between current and voltage is 0° . (1 mark)		
OP	(a) The voltage energy the secondary soil is given by:	5	-
UK	(a) The voltage across the secondary coll is given by: $N_r/N_s = V_r/V_s (1 mark)$	3	
	where $N_{p} = 500$, $N_{s} = 50$ and $V_{p} = 240$ V		
	Therefore, $T_{p} = 200$ and $T_{p} = 210$.		
	$\mathbf{V}_{s} = \mathbf{V}_{p} \mathbf{x} \left(\mathbf{N}_{s} / \mathbf{N}_{p} \right)$		

Mahotsav

= 240 x (50/500)= 24 V (1 mark) (b) Current in the secondary coil is given by: I_s = V_s/R_s (0.5 marks) where V_s = 24 V and Rs = 20 ohms Therefore, I_s = 24/20 = 1.2 A (1 mark) Current in the primary coil is given by: I_p/I_s = N_s/N_p (0.5 marks) where I_s = 1.2 A, N_s = 500 and N_p = 50 Therefore, I_p = (N_s/N_p) x (I_s) = (50/500) x (1.2) = 0.12 A (1 mark)