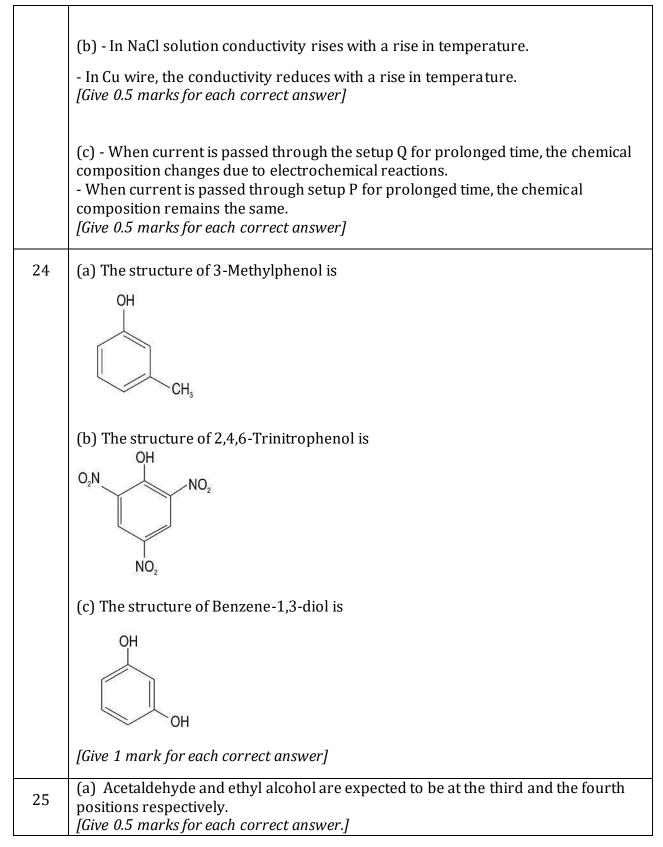


CBSE

Additional Practice Questions - Marking Scheme Subject: Chemistry Theory (043) Class: XII 2023-24

Section A				
1	(c) Zinc is deposited at the zinc electrode and copper dissolves at copper electrode in case (P).			
2	(b) Compound M is an aldehyde and compound N is a ketone.			
3	(a) Team A wins the quiz as both the responses are correct.			
4	(d) sp^2 to sp^3			
5	(c) C ₂ H ₅ Br			
6	(a) Cu			
7	(a) k[P] ² [Q]			
8	(d) Oxygen > Hydrogen > Nitrogen > Helium			
9	(b) phenol, acetic acid, benzoic acid, 2, 4, 6 - Trinitrophenol			
10	(c) 13,300 years			
11	(b) acetylation of salicylic acid in presence of an acid			
12	(b) atomic radii of 3d< atomic radii of 4d ≈ atomic radii of 5d			
13	(c) A is true, but R is false.			
14	(a) Both A and R are true, and R is a correct explanation of A.			

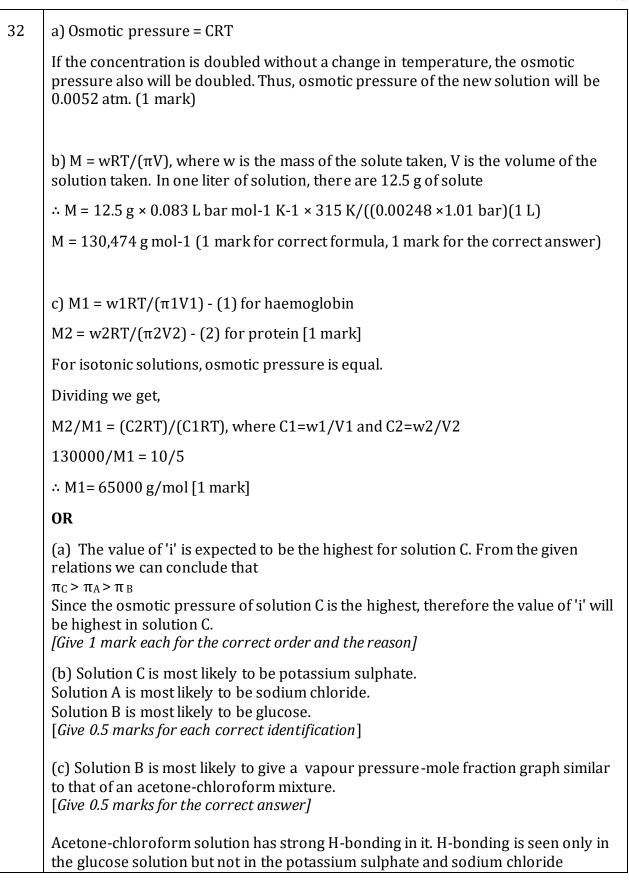
15	(b) Both (A) and (R) true but (R) is not the correct explanation of (A).
16	(c) A is true, but R is false.
	Section B
17	(a) 1 mark for the correct graph:
	(b) The rate of the reaction is independent of the concentration of the reactant. Therefore, the reaction is a zero-order reaction. [1 mark]
18	The method based on osmotic pressure is preferred over others for determining molar masses of biomolecules.
	It is preferred for biomolecules as the pressure measurement is done around room temperature and biomolecules are generally not stable at higher temperatures.
	[Give 1 mark for identifying the correct property and 1 mark for the correct reason. Students may write the answer in their own words.]
19	The C-Cl bond in CH ₃ CH ₂ CH ₂ Cl is longer than C-Cl bond in C ₆ H ₅ Cl. [1 mark]
	Reason: - The C-atom of C-Cl bond in $CH_3CH_2CH_2Cl$ is sp^3 hybridised while that in C_6H_5Cl is sp^2 hybridised. So the C-Cl bond in $CH_3CH_2CH_2Cl$ is longer than in C_6H_5Cl .
	OR
	- The C-Cl bond in chlorobenzene has a partial double bond character due to resonance. So, the C-Cl bond in chlorobenzene is shorter than in CH ₃ CH ₂ CH ₂ Cl. [1 mark]



	Reactant	Products			
	S				
	(a)	(iii)			
	(b)	(i)			
	[Give 1 mark	for each correct matc	h]		
	OR				
	The rate of reaction will be faster in ethanal. In propanone, the presence of the two methyl groups causes steric hindrance that reduces the access of the nucleophile toward the carbonyl C. This is not the case for ethanal. Hence the rate of reaction will be faster with ethanal than with propanone.				
	-	for identifying the cor ents may write the ans	•		and 1 mark for th
21	(a) The -OH group present on the C5 atom in the glucose molecule forms a six- membered ring with the -CHO group to form a cyclic hemiacetal structure. Thus, glucose does not give a positive result with the Schiff's reagent in the Schiff's test. [1 mark]				
	(b) The carb	onyl group present in	glucose is alde	ehydic. <i>[1 mark</i>]
22					
				Compound O	Compound P
	Field stren	gth of the ligands		weak field ligand	strong field ligand
	Electronic complex	configuration for meta	l M in the	$t_{2g}{}^3$, $e_g{}^1$	t_{2g}^{4} , e_{g}^{0}
	Type of con spin/low s	nplex that will be forn pin)	ned (High	high spin	low spin
	[Give 0.5 ma	rks for each correct an	swer]		
	+				

	(b) The structure (3) is most stable. This is because structure (3) has all the atoms with a complete octet or duplet in case of hydrogen. (Give 1 mark each for the explanation and identification of the most stable resonance structure.)
26	(a) The balanced reaction between glucose and hydrogen cyanide is:
	$\begin{array}{c} CHO\\ (CHOH)_{4}\\ HCN\\ (CHOH)_{4}\\ HCN\\ (CHOH)_{4}\\ HCN\\ (CHOH)_{4}\\ (CHOH)_{4}\\ (CHOH)_{4}\\ (CH_{2}OH\\ HCH_{2}OH\\ \end{array}$ The inference drawn from the above reaction is that glucose contains a carbonyl group in it.
	[Give 0.5 marks each for the correct structural formula of glucose and the product formed. Name of the product is not required, and 1 mark for the correct inference]
	 (b) The reaction will not help her to determine the number of secondary alcoholic groups and the number of primary alcoholic groups in a glucose molecule. [0.5 marks] The primary and secondary alcoholic groups in a glucose molecule, both undergo acetylation with acetic anhydride. [0.5 marks]
27	1 mark for each of the following:
21	 (a) Both the reactions occur at the same rate as S_N1 reactions are independent of the concentration of the nucleophile. (b) The reaction (i) will be slower as Br⁻ is a better leaving group than Cl⁻. (c) Reaction (ii) will not occur as the C-Cl bond has a partial double bond character due to resonance.
	[No marks to be awarded if justification is not given.]
28	 (a) 0.5 marks each for any four correct points such as: increasing the concentration of reactants decreasing the concentration of products using a catalyst carrying out the reaction at the optimum temperature.
	[marks to be given for any other relevant point]
	(b) mol m ⁻³ s ⁻¹ [1 mark]

	Section D
29	 (a) Another complex that shows similar properties as shown in the compound of Cu stated here is [Ti(H₂O)₆]Cl₃. The geometry of the complex is octahedral. [Give 0.5 marks for each correct answer. Any other correct answer to be accepted.] (b) When a ligand can bind through two donor atoms as in the ligand 'en' added to
	$[Ni(H_2O)_6]^{2+}$ it is said to be a didentate ligand. [1 mark]
	(c)
	en:N Colour absorbed i
	2:1 red
	3:1 blue green
	[Give 1 mark for each correct answer]
	OR
	en:N Formula of the ion formed
	1:1 $[Ni(H_2O)_4(en)]^{2+}$ 3:1 $[Ni(en)_3]^{2+}$
	[Give 1 mark for each correct answer]
30	(a) Cell constant = 10 ohms × 0.13 S/m = 1.3 m ⁻¹ [1 mark]
	(b) TDS = $10^4 \times 0.65 \times \text{conductivity}$ (S/m) TDS = $10^4 \times 0.65 \times 0.13 = 845 \text{ mg/L} [1 \text{ mark}]$
	(c) TDS = $10^4 \times 0.65 \times \text{conductivity}$ (S/m) conductivity = $250/(10^4 \times 0.65)$
	conductivity = 0.038 S/m [1 mark]
	conductivity = cell constant/R R = cell constant/ conductivity R = 1.3/0.038 = 34.2 ohms [1 mark]



		Amr
	OR	
	R = cell constant/conductivity conductivity = 1.3/79 conductivity = 0.016 S/m [1 mark]	
	TDS = $10^4 \times 0.65 \times \text{conductivity}$ TDS = $10^4 \times 0.65 \times 0.016$ TDS = $104 \text{ mg/L} [1 \text{ mark}]$	
	Section E	
31	(a) Sc ⁺³ and Ti ⁺⁴ are isoelectronic with 18 electrons in them. [Give 1 mark for the correct answer]	
	(b) Colour of coordination compounds arise due to the d-d transitions. Sc ⁺³ and Ti ⁺⁴ ions do not have any electrons in their 3d orbitals and Zn ⁺² has fully filled 3d orbital. So, d-d transitions do not occur in these ions and thus they are colourless. [Give 1 mark for the correct answer]	
	(c) Zn ⁺² ion from the list is not an ion of a transition metal because it has a complete 3d ¹⁰ orbital. It cannot lose any electron from the 3d ¹⁰ and they are all paired. So, it is not a transition metal ion. [Give 1 mark for identifying the correct ion and the reason together]	
	(d) CrO is expected to turn red litmus blue as it is basic in nature. [Give 1 mark for the correct answer]	
	(e) The increasing order of the magnetic moments of the given ions are: Sc ⁺³ , V ⁺⁴ , Ni ⁺² , V ⁺² [Give 1 mark for the correct answer]	
	(f)The transition metals have similar radii. Hence, alloys are readily formed by these metals. [Give 1 mark for the correct answer].	
	(g) Cu ion can also have a +1 oxidation state. [Give 1 mark for the correct answer].	

