

UPHESC AP

Previous YearPaper (Physics) 22 Mar, 2022

Adda 247

ALL EXAMS, ONE SUBSCRIPTION

1,00,000+ Mock Tests

Personalised Report Card

Unlimited Re-Attempt

600+ Exam Covered

25,000+ Previous Year Papers

500% Refund

ATTEMPT FREE MOCK NOW

Polytechnic Lecturer (Technical Education)

LEG.	DO	NOT OPEN	THIS TEST
Y 1	2021	Exam	Date -

22-03-2022

2021

TETS21 - 44 CODE

SERIES

Physics-II

(Question Paper-II)

General Studies : Q. No. 1 to 25

BOOKLET UNTIL YOU ARE TOLD TO DO SO.

Part - II :

Part - I

SUBJECT:

Physics-II

: Q. No. 26 to 125

Time: 2.30 Hours

Max. Marks: 375

Write your Roll Number

In numbers

in the box

In words

To mark Answer use Black Ball-Point Pen only.

Candidate must read all the instructions before writing the answers.

You are to mark your answer on Answer-Sheet only. After the examination is over, handover the original Answer-Sheet to the Invigilator.

IMPORTANT INSTRUCTIONS

- Answer all questions. All questions carry equal marks.
- The Candidate should indicate the correct Roll Number, Subject, Paper Code and its Series on the Answer-Sheet, otherwise the Answer-Sheet will not be evaluated and the candidate will be solely responsible for it.
- 3. This Test Booklet contains 125 questions. Each question has four (4) options which are given below the questions. Only one option is correct out of four. You are required to darken the circle corresponding to the alternative which you consider to be the correct or most appropriate answer in the Answer-Sheet by Black Ball-Point Pen.
- 4. Do not write anything on the cover page of the Test Booklet except Roll Number. Use the space for rough work given in the last page of Test Booklet.
- 5. If you happen to find that the Booklet issued to you does not have all the pages properly printed or it has any other deficiency, then you need to approach the Invigilator to get another Booklet of same Series and Code.
- 6. In this question booklet questions are printed in both English and Hindi languages. In case of any ambiguity in the question, the English version of the question shall prevail.
- 7. Penalty for wrong answers:

THERE WILL BE PENALTY FOR WRONG ANSWERS MARKED BY A CANDIDATE IN THE ANSWER SHEET.

- There are four alternatives for the answer to every question. For each question for which a wrong answer has (i) been given by the candidate, one-third of the marks assigned to that question will be deducted as penalty.
- If a candidate gives more than one answer, it will be treated as a wrong answer even if one of the given answer (ii) happens to be correct and there will be same penalty as above to that question.
- If a question is left blank, i.e., no answer is given by the candidate, there will be no penalty for that question.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.

ध्यान दें : अनुदेशों का हिन्दी रूपांतर इस पुस्तिका के प्रथम पृष्ठ पर छपा है।

Part - I / भाग - I

GENERAL STUDIES (1 to 25) / सामान्य अध्ययन (1 से 25 तक)

- With reference to Parliamentary Standing Committees notified in October 2021, which of the following statement/s is/are correct?
 - 1. Sushil Modi is the Chairman of the Standing Committee on Law and Justice.
 - 2. Shashi Tharoor is the Chairperson of the Standing Committee of Information and Technology.

Select the correct answer from the code given below:

Code -

- (a) Only 1
- (b) Only 2
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 2. Which of the following Articles is related to Protection of Life and Personal Liberty?
 - (a) Article 20
- 1 (b) Article 21
 - (c) Article 22
- (d) Article 26
- Which among the following Articles has Provision for the Election Commission?
 - (a) Article 322
- (b) Article 324
- (c) Article 352
- (d) Article 361
- 4. The Nobel Prize in Chemistry announced in October 2021 has been jointly bagged by -
 - Benjamin List and David MacMillan
 - Benjamin List and Klaus Hasselmann
 - (c) David MacMillan Klaus Hasselmann
 - (d) None of the above
- Which one of the following states in India has the maximum number of tribal districts as per 'India State of Forest Report 2019'?
 - (a) Nagaland
- (b) Meghalaya
- (c) Mizoram
- (d) Manipur
- Which one of the following rulers adopted the title of 'Hazrat - i - Ala'?
 - (a) Babur
- Akbar
- (c) Shah Jahan
- (d) Sher Shah

- अक्टूबर 2021 में, अधिसूचित संसदीय स्थायी समितियों के संदर्भ में, निम्नलिखित में से कौनसा/से कथन सही है / हैं?
 - 1. कानून एवं न्याय की स्थायी समिति के अध्यक्ष सुशील मोदी हैं।
 - 2. सूचना एवं तकनीकी की स्थायी समिति के अध्यक्ष शशि थरुर हैं।

नीचे दिए गए कूट से सही उत्तर का चयन कीजिए -

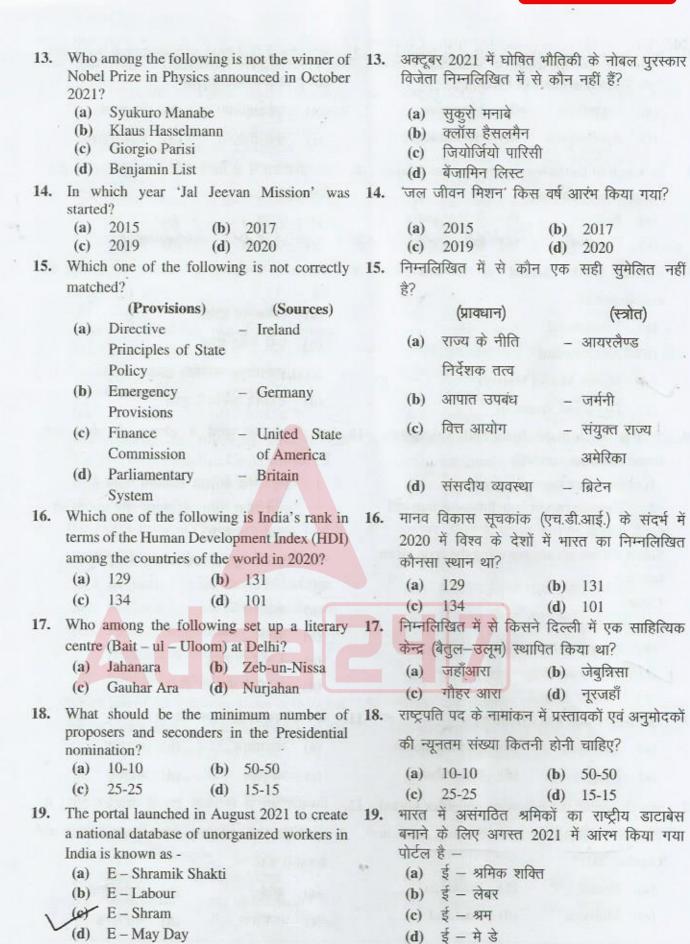
- कूट -
- (a) केवल 1 (b) केवल 2
- (d) न तो 1 ना ही 2 (c) 1 और 2 दोनों
- निम्नलिखित अनुच्छेदों में से कौनसा जीवन और व्यक्तिगत स्वतंत्रता के संरक्षण से संबंधित है?
 - अनुच्छेद 20
- (b) अनुच्छेद 21
- (c) अनुच्छेद 22
- (d) अनुच्छेद 26
- निम्नलिखित में से कौन से अनुच्छेद में निर्वाचन आयोग का प्रावधान है?
 - (a) अनुच्छेद 322
- (b) अनुच्छेद 324
- (c) अनुच्छेद 352
- (d) अनुच्छेद 361
- अक्टूबर 2021 में घोषित रसायन विज्ञान के नोबेल पुरस्कार के संयुक्त विजेता हैं -
 - बेंजामिन लिस्ट तथा डेविड मैकमिलन
 - (b) बेंजामिन लिस्ट तथा क्लॉस हैसलमैन
 - डेविड मैकमिलन तथा क्लॉस हैसलमैन
 - (d) इनमें से कोई नहीं
- 'भारत वन स्थिति रिपोर्ट 2019' के अनुसार निम्नलिखित में से किस राज्य में जनजातीय जिलों की संख्या सबसे अधिक है?
 - (a) नागालैण्ड
- (b) मेघालय
- (c) मिज़ोरम (d) मणिपूर
- निम्नलिखित में से किस शासक ने 'हजरत-ए-आला' की उपाधि धारण की?
 - बाबर
- (b) अकबर
- शाहजहा
- (d) शेरशाह

- 7. Who built 'Garuda Dhwaj Pillar' at Besnagar near Vidisha in Madhya Pradesh?
 - (a) Eucratides
- (b) Menander
- (c) Apollodotus
- (d) Heliodorous
- In which of the following river is the 'Majuli River Island' situated?
 - (a) Krishna
- (b) Brahmaputra
- Godavari (c)
- (d) Indus
- 9. Central Hindu School at Banaras was established by -
 - (a) Vivekanand
 - (b) Annie Besant
 - (e) Madan Mohan Malviya
 - (d) Dayanand Saraswati
- 10. With reference to the 'Black Soil' which of the 10. statement is/are correct?
 - These are known as regur.
 - They are rich in iron, lime, calcium and potash.

Select the correct answer using the code given below:

Code -

- (a) Only 1
- (b) Only 2


(c) Both 1 and 2

- (d) Neither 1 nor 2
- 11. Jain Kalpasutra was written by -
 - (a) Katyayan
- (b) Buddhaghosha
- (c) Nagsen
- (d) Bhadrabahu
- 12. Which one of the following countries hosted 12. the 18th ASEAN - India Summit held in October 2021?
 - (a) Brunei
- (b) Indonesia
- (c) Malaysia
- (d) Thailand

- मध्यप्रदेश में विदिशा के पास बेसनगर में 'गरुड ध्वज 7. स्तम्भ' किसने बनवाया था?
 - (a) यूक्रेटाइडिस (b) मिनाण्डर
 - अपोलोडोटस
- (d) हेलियोडोरस
- निम्नलिखित में से किस नदी में 'माजुली नदीय द्वीप' स्थित है?
 - (a) कृष्णा
- (b) ब्रह्मपुत्र
- गोदावरी
- (d) सिंध्
- बनारस में 'केन्द्रीय हिन्दू विद्यालय' की स्थापना की गई -
 - (a) विवेकानंद द्वारा
 - (b) एनी बेसेंट द्वारा
 - (c) मदनमोहन मालवीय द्वारा
 - (d) दयानंद सरस्वती द्वारा
- 'कालीमिट्टी' के संदर्भ में कौनसा/से कथन सही き/ぎ?
 - 1. इन्हें रेगड़ के नाम से जाना जाता है।
 - इनमें लोहा, चूना, कैल्शियम और पोटाश की प्रचुरता होती है।

नीचे दिए गए कूट से सही उत्तर को चूनिए -कूट -

- (a) केवल 1
- (b) केवल 2
- 1 और 2 दोनों (c)
- (d) न तो 1 और ना ही 2
- 11. जैन कल्पसूत्र की रचना की थी -
 - कात्यायन (a)
- (b) बुद्धघोष
- (c) नागसेन
- (d) भद्रबाह
- निम्नलिखित में से किस देश ने अक्टूबर 2021 में, आयोजित 18वें आसियान-भारत शिखर सम्मेलन की मेजबानी की?
 - (a) ब्रुनेई
- (b) इंडोनेशिया
- मलेशिया (c)
- (d) थाईलैण्ड

- 20. Who went London to plea before the 'Court of 20. बाजीराव द्वितीय को दी जाने वाली पेंशन नाना साहब Director' for the right of Nana Sahib to be given the pension paid to Baji Rao II?
 - (a) Azimullah Khan
 - (b) Tatya Tope
 - Omar Pasha (c)
 - (d) Rango Bapuji
- 21. Which of the following pairs is not correctly 21. matched?

	(Soil)	(State)
(a)	Alluvial soil	 Uttar Pradesh
(b)	Black soil	- Maharashtra
Ver	Laterite soil	- Bihar
(d)	Red soil	- Tamil Nadu

- 22. Which one of the following pairs is not 22. निम्नलिखित युग्मों में से कौनसी सुमेलित नहीं है? correctly matched?
 - (a) Shivasamudram Kaveri River Waterfall
 - (b) Jog Waterfall - Sharavathi River
 - (c) Vattaparai - Chandraprabha Waterfall River
 - (d) Dhuandhar Narmada River Waterfall
- 23. Which one of the following started 'Lathi 23. Club' during the freedom struggle of India?
 - Bhagat Singh
 - (b) Lala Lajpat Rai
 - Bipin Chandra Pal
 - (d) Bal Gangadhar Tilak
- 24. Who is called the architect of Panchayati Raj System in India?
 - (a) Acharya Narendra Dev
 - (b) G.V.K. Rao
 - (c) B. R. Mehta
 - (d) L. M. Singhvi
- 25. In India, which of the following has the power 25. to negotiate foreign treaties?
 - (a) Parliament
 - (b) President
 - (c) Prime Minister
 - Speaker of Lok Sabha

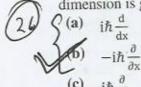
- को दिए जाने हेत् पैरवी के लिए 'कोर्ट ऑफ डायरेक्टर' के समक्ष लंदन कौन गया था?
 - (a) अजीमुल्लाह खाँ
 - (b) तात्या टोपे
 - (c) उमर पाशा
 - (d) रंगो बापूजी
- निम्नलिखित युग्मों में से कौन सही सुमेलित नहीं

	(मिट्टी)	(राज्य)
(a)	जलोढ़ मिट्टी	– उत्तर प्रदेशु
(b)	काली मिट्टी	– महाराष्ट्र
(c)	लैटेराइट मिट्टी	– बिहार
(d)	लाल मिट्टी	– तमिलनाडु

- - शिवसमुद्रम जलप्रपात कावेरी नदी
 - शरावती नदी (b) जोग जलप्रपात
 - वट्टापराई जलप्रपात चन्द्रप्रभा नदी (c)
 - धुआंघार जलप्रपात (d) नर्मदा नदी
- निम्नलिखित में से किसने भारतीय स्वतंत्रता संग्राम के दौरान 'लाठी क्लब' की स्थापना की थी?
 - (a) भगत सिंह
 - (b) लाला लाजपत राय
 - बिपिन चन्द्र पाल (c)
 - (d) बाल गंगाधर तिलक
- भारत में पंचायती राज व्यवस्था का शिल्पी किसे कहा 24. जाता है?
 - (a) आचार्य नरेन्द्र देव
 - जी.वी.के. राव
 - बी. आर. मेहता (c)
 - एल. एम. सिंघवी
 - भारत में निम्नलिखित में से किसके पास विदेशी संधियों पर बातचीत करने की शक्ति है?
 - संसद (a)
 - राष्ट्रपति (b)
 - प्रधानमंत्री (c)
 - (d) लोकसभा अध्यक्ष

Part - II / भाग - II

PHYSICS-II (26 to 125) / भौतिकी-II (26 से 125 तक)


- Quantum operator for energy is -26.
 - (a) iħ∇
 - -iħ∇ (b)

 The Eigen function Ø_n and the corresponding eigen value an or a Hermitian operator are related by -

(a) $\hat{A} \Psi_n^* = \alpha_n \Psi_n$

 $\widehat{A} \Psi_n = \alpha_n \Psi_n$

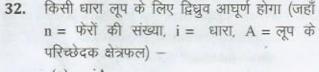
- (c) $\widehat{A} \Psi_n = \alpha_n \Psi_n^*$
- (d) None of the above
- The output of a NAND gate is '0' only, if -
- - (a) all the inputs are '0'
- 0 0
- all the inputs are '1'
- all inputs except one are '0' [.]
- all inputs except one are '1'
- 29. A Zener diode is suitable for -
 - (a) voltage regulation
 - (b) current regulation
 - (c) both (a) & (b)
 - (d) rectifier
- The quantum mechanical operator for the momentum of a particle moving in one dimension is given by -

- $i\hbar\frac{\partial}{\partial t}$
- 2m dx2
- The Cut-in voltage for Ge diode is nearly -
 - (a) 0.6 V (b) 0.3 V
 - 1.01 V (c)
 - (d) None of the above

- ऊर्जा के लिए क्वॉन्टम ऑपरेटर होता है -26.
 - (a) iħ∇
 - (b) −iħ∇

 - $-i\hbar \frac{\partial}{\partial t}$
- एक हर्मीशियन ऑपरेटर के आइगन फलन Øn और 27. उसके संगत आइगन मान αn को प्रदर्शित किया जाता है -
 - (a) $\widehat{A} \Psi_n^* = \alpha_n \Psi_n$
 - (b) $\hat{A} \Psi_n = \alpha_n \Psi_n$
 - (c) $\widehat{A} \Psi_n = \alpha_n \Psi_n^*$
 - (d) इनमें से कोई नहीं
- किसी नैण्ड (NAND) गेट का निर्गत केवल तभी 28., ·0' होगा, जब -
 - (a) सभी निवेश '0' हों
 - (b) सभी निवेश '1' हों
 - (c) एक को छोड़कर अन्य सभी निवेश '0' हों
 - (d) एक को छोड़कर अन्य सभी निवेश '1' हों
- ज़ेनर डायोड उपयुक्त होता है -29.
 - (a) विभव नियन्त्रण के लिए
 - (b) धारा नियन्त्रण के लिए
 - दोनों (a) तथा (b)
 - (d) रेक्टिफायर के लिए
 - एक विमीय दिशा में गति कर रहे किसी कण के संवेग के लिए क्वॉन्टम यांत्रिकी ऑपरेटर होगा -

30.


- $-i\hbar \frac{\partial}{\partial x}$ (b)
- (c)
- (d)
- एक जर्मेनियम (Ge) डायोड के लिए कट-इन 31. विभव का मान लगभग होगा -
 - (a) 0.6 वोल्ट
 - (b) 0.3 वोल्ट
 - 1.01 वोल्ट (c)
 - (d) इनमें से कोई नहीं

Dipole moment of a current loop is given by (where n = no. of turns, i = current, A=area of cross section) -

(a) niA

- (b) ngA
- (d)

- (a) niA
- (b) ngA
- n A (d)

33. The internal resistance of an ideal constant 33. 6.6 × 1634 प्रतिरोध है voltage source is -

(a) zero

- (b) infinite
- equal to resistance of load (c)
- (d) None of the above

A 10 gm marble is in a box 10 cm across. Find its permitted energy -

(a) $2.2 \times 10^{-62} \,\text{n}^2$ Joule

- (c) $2.2 \times 10^{64} \,\mathrm{n}^2$ Joule
- (d) $5.5 \times 10^{62} \,\mathrm{n}^2$ Joule

(b) $5.5 \times 10^{-64} \, \text{n}^2 \, \text{Joule}$

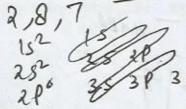
The KE of an electron in an atom is -

half of its PE double of PE

- equal to PE (c)
- thrice of PE

36. Which of the following is not the basic logic 36. gate?

- (a) OR
- (b) NOT


XOR

(d) AND

The ground state spectroscopic term for ¹⁷Cl 37. atom is -

- (a)
- (b)
- (c)

(d)

एक आदर्श स्थिर वोल्टेज श्रोत का आन्तरिक

(a) शुन्य

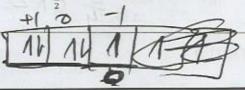
34.

- (b) अनन्त
- (c) लोड के प्रतिरोध के बराबर
- (d) उपरोक्त में से कोई नहीं

10 से.मी. के बॉक्स में 10 ग्राम मार्बल की अनुमत ऊर्जा ज्ञात करिए -

- (a) 2.2 × 10⁻⁶² n² जूल
- (b) 5.5 × 10⁻⁶⁴ n² जूल
- 2.2 × 10⁶⁴ n² जूल
- (d) 5.5 × 10⁶² n² जूल

किसी परमाणु में इलेक्ट्रॉन की गतिज ऊर्जा 35. होगी -


- (a) स्थितिज ऊर्जा की आधी
- (b) स्थितिज ऊर्जा की दो ग्नी
- (c) स्थितिज ऊर्जा के बराबर
- (d) स्थितिज ऊर्जा की तीन ग्नी

निम्न तार्किक गेटों में कौन-सा मूलभूत गेट नहीं हे?

- (a) OR
- (b) NOT
- XOR (c)
- AND (d)

¹⁷Cl परमाणु के लिए निम्नतम अवस्था स्पेक्ट्रोस्कोपिक टर्म है –

- (a) $^{3}P_{0}$
- (b)
- (c)
- (d)

- 38. When negative current feedback is used in an amplifier, the output impedance-
 - (a) increases
 - (b) decreases
 - remains same (c)
 - None of the above
- Which of the following cannot be a consequence of negative feedback amplifiers?
 - (a) Increase in bandwidth
 - (b) Increase in input impedance
 - Increase in fidelity (c)
 - (d) Increase in noise

- किसी प्रवंधक में ऋणात्मक धारा पुनः निर्विष्ट प्रयोग 38. करने पर निर्गत प्रतिबाधा-
 - (a) बढती है
 - (b) घटती है
 - वही रहती है (c)
 - (d) इनमें से कोई नहीं

निम्न में कौन प्रवर्धकों के ऋणात्मक फीडबैक के परिणाम स्वरूप नहीं हो सकता है?

- (a) बैन्ड चौड़ाई में वृद्धि
- (b) निवेशी प्रतिबाधा में वृद्धि
- (d) शोर में वृद्धि

40. The force on an electron moving with 40. $\vec{v} = 2.5 \times 10^6 \,\hat{i}$ मी./से. वेग से चुम्बकीय क्षेत्र velocity $\vec{v}=2.5\times 10^6\,\hat{i}$ m/s in a magnetic \vec{l} - \vec{S} $\vec{q}\vec{B}=(10\hat{i}-6\hat{k})\times 10^2\,$ वेबर/मी. 2 में चलने field $\vec{B}=(10\hat{i}-6\hat{k})\times 10^2 \text{Wb/m}^2$, is- \vec{l} - \vec{d} इलेक्ट्रॉन पर लगने वाला बल है-'८ - बाले इलेक्ट्रॉन पर लगने वाला बल है- $(e=1.6\times10^{-19}c)$ $(e=1.6\times10^{-19}c)$

41.

39.

- (a) 4.8×10^{-10} î Newton
- (6) 2.4×10^{-10} î Newton
- $2.4 \times 10^{-10} \hat{k}$ Newton
- $4.8 \times 10^{-10} \hat{k}$ Newton (d)

- [o (a) 4.8 × 10⁻¹⁰ĵ न्यूटन
 - (b) 2.4×10^{-10} \hat{j} न्यूटन
 - (c) 2.4×10^{-10} kे न्यूटन
 - (d) 4.8×10^{-10} kे न्यूटन
- Match the following and choo 41.

Match the following and	i choose the confect
answer from code -	
Physical Quantity	MKS Unit
and the second s	THE CHARLEST CO.

Watt

- Power B Magnetic field Weber C Magnetic flux Tesla
- D Inductance

निम्नलिखित को सुमेलित कर कूट से सही उत्तर प्राप्त करें -

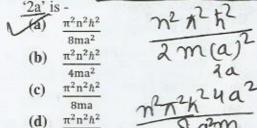
भौतिक राशि		MKS मात्रव	
A	शक्ति	1	हेनरी
R	चारतिय शेव	2	तेराज

- C चुम्बकीय पलक्स टेसला
- D प्रेरकत्व वॉट

Code -

	A	В	C	D
(a)	_ 1	2	3	4
(b)	4	3	2	1 -
(c)	2	4	1	3
(d)	3	1	4	2

- D (a) 2 4 3 (b)
- (c) (d) 1
- 42. According to Moseley's law frequency of Ka 42. मोसले के नियमानुसार Kα रेखाओं की आवृत्ति line will be -


 - (b) $\frac{2}{3} CRZ^{2} \angle RZ^{2} \left[\frac{1}{12} \frac{3}{4} CRZ^{2} \right]$ (d) $\frac{4}{3} CRZ^{2} = \frac{3}{4} CRZ^{2}$

 $\frac{1}{2}$ CRZ²

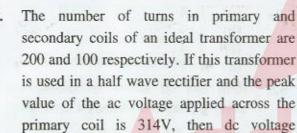
कूट -

- CRZ2

43. Energy levels of a particle of mass 'm' confined in one dimensional box of length

The process of nuclear fusion can be best 44. explained by -

Bohr model & (a) biguid drop model Shell model Sommerfeld model


4ma

Vibrational spectra of diatomic molecule 45. falls in region -

- Far infrared
- Near infrared

Ultra violet (0)

Visible light (d)

- (a) 70 V
- 100 V (b)
- 200 V
- (d) 50 V

Davisson-Germer experiment gives the proof

produced by half wave rectifier will be -

- particle nature of waves
- uncertainty principle

wave nature of electron 40

speed of light (d)

'2a' लम्बाई के एक दिशीय बॉक्स में बन्द 'm' 43. द्रव्यमान के कण का ऊर्जा स्तर है

- $\pi^2 n^2 \hbar^2$ 8ma² $\pi^2 n^2 \hbar^2$ (b)
- 4ma² $\pi^2 n^2 \hbar^2$
- 8ma

 $\pi^2 n^2 \hbar^2$ 4ma

नाभकीय विखण्डन की प्रक्रिया को श्रेष्ठतम समझाया जा सकता है -

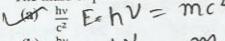
- बोर मॉडल से (a)
- (b) तरल ड्रॉप मॉडल से
- शेल मॉडल से (c)
- (d) सोमरफील्ड मॉडल से

द्विपरमाणविक अण् का कम्पन स्पेकट्रम निम्न में किस क्षेत्र में होगा?

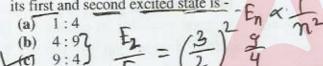
- दूरस्थ अवरक्त (a)
- निकटतम अवरक्त (b)
- पराबँगनी (c)
- (d) दृश्य प्रकाश

एक आदर्श ट्रान्सफॉर्मर की प्राथमिक और द्वितीयक कंडलियों में क्रमशः 200 तथा 100 फेरे हैं। यदि इस ट्रान्सफॉर्मर को एक अधिदिष्टकारी में उपयोग किया जाए तथा प्राथमिक कुंडली के सिरों के बीच प्रत्यावर्ती धारा का शिखर मान 314 वोल्ट हो, तो अर्धदिष्टकारी द्वारा प्राप्त डी.सी. वोल्टेज का मान होगा -

- (a) 70 वोल्ट
- 100 वोल्ट (b)
- 200 वोल्ट (c)
- 50 वोल्ट (d)


डेविसन-जर्मर प्रयोग प्रमाण देता है -47.

- तरंगों के कण प्रकृति का (a)
- अनिश्चितता के सिद्धान्त का (b)
- इलेक्ट्रॉन के तरंग प्रकृति का
- प्रकाश के वेग का (d)


- 48. When γ-rays fall on heavy substance, electron and positron are produced, the phenomenon is known as -
 - (a) β-decay
 - (b) Meson production
 - (c) Cosmic ray
 - (d) Pair production
- 49. The difference of wavelengths between D₁ and D₂ lines of sodium spectra is 9. 36
 - (a) 10Å
 - (b) 8Å

160 6Å

- (d) 2Å
- 50. The mass of photon in motion is 2

- (a) P
- hv =
- (c) $\frac{p}{\lambda}$
- (d) Zero
- 51. The ratio of the energies of hydrogen atom in its first and second excited state is -

- Find the expectation value of position of a particle whose normalised wave function is $\Psi(x) = Ne^{-(x^2/2a^2) + ikx}$
 - (a) $< x > = a^2$
 - **(b)** $< x > = k^2$
 - (c) $\langle x \rangle = \hbar k$
 - $(\mathbf{d}) < \mathbf{x} > = 0$
 - 53. In case of a transformer mutual inductance (M) between primary (L₁) and secondary (L₂) is -

(a)
$$M = K \sqrt{\frac{L_1}{L_2}}$$

(b)
$$M = K \sqrt{\frac{L_2}{L_1}}$$

$$M = K\sqrt{L_1.L_2}$$

(d)
$$M = K\sqrt{L_1^2, L_2^2}$$

- 48. जब γ-किरणों किसी भारी तत्व पर गिरती हैं, इलेक्ट्रॉन एवं पॉज़िट्रान उत्सर्जित होते हैं। इस घटना को कहते हैं –
 - (a) β-क्षय
 - (b) मीसॉन उत्पादन
 - (c) कॉस्मिक किरण
 - (d) युग्म उत्पादन
- 49. सोडियम स्पेक्ट्रम में D₁ & D₂ तरंगों के बीच तरंगदैर्ध्य में अन्तर होगा —
 - (a) 10Å
 - (b) 8Å
 - (c) 6Å
 - (d) 2Å
- 50. गतिशील फोटॉन का द्रव्यमान है -
 - (a) $\frac{hv}{c^2}$
 - (b) $\frac{hv}{c}$
 - (c) $\frac{p}{\lambda}$
 - (d) शून्य

हाइड्रोजन परमाणु के प्रथम एवं द्वित्तीय उत्तेजित कक्ष में ऊर्जा का अनुपात होगा —

- (a) 1:4
- (b) 4:9
- (c) 9:4
- (d) 4:1
- किसी कण की अवस्था का प्रत्याशी मान ज्ञात करिए, जिसका प्रसामान्यीकरण तरंग फलन है —

$$\Psi(x) = Ne^{-(x^2/2a^2)+ikx}$$

- (a) $\langle x \rangle = a^2$
- **(b)** $< x > = k^2$
- (c) $\langle x \rangle = \hbar k$
- (d) < x > = 0
- 53. किसी ट्रान्सफॉर्मर में प्राइमरी (L1) तथा सेकेन्डरी (L2) के बीच अन्योन्य प्रेरकत्व (M) होगा —

(a)
$$M = K \sqrt{\frac{L_1}{L_2}}$$

- (b) $M = K \sqrt{\frac{L_2}{L_1}}$
- (c) $M = K\sqrt{L_1 L_2}$
- (d) $M = K\sqrt{L_1^2, L_2^2}$

dda 247

Cooper pair has, electrons of -

- equal and opposite momentum
- (B) equal and opposite spins
- (C) spins not equal

Which of the above statements are true?

- Only (A) (a)
- (b) Only (B)
- (c) (A) & (B)
- (d) (A) & (C)

55.

According to Heisenberg's Uncertainty principle, a quantum state with infinite life time implies that the state has -

(a) Zero energy

55.

- (6) Exact energy
- (c) Finite energy with negligible width
- (d) Finite width

LED made using GaAs emits radiation in -56.

(a) Visible region

- (b) Ultraviolet region
- Infrared region
- Microwave

Correct relationship for Hall coefficient for

electrons is -

(a)
$$R_H = -\frac{B}{E_H}J_X$$

- (b) $R_H = -\frac{E_H}{R}J_X$
- (c) $R_H = -BE_H J_X$
- (d) $R_{H} = -\frac{E_{H}}{R_{L}}$

58. Faraday law of electromagnetic induction in 58.

Universal form is -

(a) div
$$\vec{E} = \frac{\rho}{\epsilon_0} \ll$$

(b) $\nabla^2 V = -\frac{\rho}{\epsilon_0} \ll$

(d) $\operatorname{curl} \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$ Ans

54. कूपर युग्म में, इलेक्ट्रॉन होते हैं -

- (A) बराबर एवं विपरीत संवेग के
- (B) बराबर एवं विपरीत स्पिन के
- (C) असमान स्पिन के

उपरोक्त में कौन-से कथन सत्य हैं?

- (a) कंवल (A)
- (b) केवल (B)
- (A) एवं (B) (c)
- (d) (A) एवं (C)

हाइज़ेनबर्ग के अनिश्चितता के सिद्धान्त के अनुसार, एक अनन्त जीवन काल का क्वाण्टम स्टेट इंगित करता है अवस्था है।

- (a) शून्य ऊर्जा की
- (b) यथार्थ ऊर्जा की
- (c) नगण्य चौड़ाई की निश्चित ऊर्जा की
- (d) निश्चित चौडाई की

GaAs से बना LED विकिरण उत्सर्जित करता 56.

- (a) दृश्य क्षेत्र में
- (b) पराबैंगनी क्षेत्र में
- (c) अवरक्त क्षेत्र में
- (d) माइक्रोवेव क्षेत्र में

57. इलेक्ट्रॉनों के लिए हॉल गुणांक का सही सम्बन्ध

(a)
$$R_H = -\frac{B}{E_H}J_X$$

- (b) $R_H = -\frac{E_H}{R} J_x$
- (c) $R_H = -BE_H I_v$
- (d) $R_H = -\frac{E_H}{B_L L_c}$

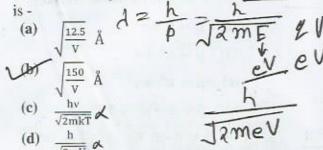
फैराडे का विद्युत चुम्बकीय प्रेरण नियम, सार्वभौमिक

रूप में है -

- $\operatorname{div} \vec{E} = \frac{\rho}{\epsilon_0}$

 - (d) curl $\vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$

- **59.** The binding energy per nucleon is maximum for nuclei -
 - (a) 56Fe
 - (b) 208Pb
 - **√**(C) ⁴He
 - (d) 101 Mc
- 60. If a particle has wave function $\Psi = ax$ between x = 0 and x = 1, find the expectation value < x > or the particle position -
 - (a) a²
 - (b) $\frac{a^2}{4}$
 - $(c) \frac{a^2}{\frac{a}{4}}$
- 61. The commutator of two operators A and B is defined as -
 - $\begin{cases}
 (a) & [\widehat{A}, \widehat{B}] = \widehat{A} \widehat{B} + \widehat{B} \widehat{A} \\
 (b) & [\widehat{A}, \widehat{B}] = \widehat{A} \widehat{B} \widehat{B} \widehat{A}
 \end{cases}$ $(c) & [\widehat{A}, \widehat{B}] = \widehat{A} \widehat{B} \times \widehat{B} \widehat{A}$
 - (d) None of the above
- 62. The isospin is conserved in -
 - (a) Strong and electromagnetic interactions
 - (b) Electromagnetic and weak interactions
 - (c) Weak interactions only
 - (d) Strong interactions only
- 63. The maximum kinetic energy of the ion 63. emerging from the cyclotron is -
- $9 = \frac{9 \text{ BR}(a)}{m}$ (b) $\frac{qBR^2}{2m}$ (d) $\frac{q^2B^2R^2}{2m}$
 - 64. A circular coil of radius 'r' carries a current and the magnetic field at its centre is 'B'. At what distance from the centre on the axis of coil, the magnetic field will be B/8?
 - (a) r
 - (b) 2r
 - (c) √3r
 - (d) 8r


- 59. किस नामिक में बंधन ऊर्जा प्रति न्यूक्लियॉन अधिकतम होगी?
 - (a) 56Fe
 - (b) 208Pb
 - (c) ⁴He
 - (d) 101 Mo
 - यदि x = 0 तथा x = 1 के बीच किसी कण का कार्य फलन $\Psi = ax$ है, तो कण की स्थिति का अपेक्षा मान है
 - (a) a²

60.

62.

- (b) <u>a²</u>
- (c) $\frac{a^2}{2}$
- $I(d) = \frac{a}{4}$
- दो ऑपरेटर Â और B के कम्यूटेटर को परिभाषित किया जाता है –
- (a) $\left[\widehat{A}, \widehat{B}\right] = \widehat{A}\widehat{B} + \widehat{B}\widehat{A}$
- (b) $[\widehat{A}, \widehat{B}] = \widehat{A}\widehat{B} \widehat{B}\widehat{A}$
- (c) $[\widehat{A}, \widehat{B}] = \widehat{A}\widehat{B} \times \widehat{B}\widehat{A}$
- (d) इनमें से कोई नहीं
- आइसोस्पिन संरक्षित होती है -
 - (a) मजबूत एवं विद्युत चुम्बकीय अन्योन्य क्रिया में
 - (b) विद्युत चुम्बकीय एवं कमजोर अन्योन्य क्रिया में
 - (c) केवल कमज़ोर अन्योन्य क्रिया में
 - (d) केवल मज़बूत अन्योन्य क्रिया में
 - साइक्लोट्रॉन से बाहर आने वाले आयन की अधिकतम गतिज ऊर्जा होगी –
 - (a) qBR
 - $\frac{(b)}{2m}$
 - (c) $\frac{q^2B^2R^2}{2m}$
 - $(\mathbf{d}) \quad \frac{\mathbf{q}^2 \mathbf{B}^2 \mathbf{R}^2}{\mathbf{m}}$
 - 'r' त्रिज्या की एक वृत्ताकार कुंडली जिसमें धारा बह रही है, के केन्द्र पर चुम्बकीय क्षेत्र 'B' है। कुंडली के केन्द्र से अक्ष पर कितनी दूरी पर चुम्बकीय क्षेत्र का मान B/8 होगा?
 - (a) r
 - (b) 2r
 - (c) √3r
 - (d) 8r

- 65. The magic numbers showing greater nuclear stability are -
 - (a) 2, 8, 20, 50, 60, 126
 - (b) 2, 8, 18, 50, 82, 126
 - (c) 2, 8, 20, 50, 82, 126
 - (d) None of these
- 66. The de-Broglie wavelength of an electron accelerated to a potential difference of V volt

- 67. The current through a pn junction is given by -
 - (a) $I = I_0 (e^{eV/kT} + 1)$
 - \int (b) $I = I_0 (e^{-eV/kT} + 1)$
 - (c) $I = I_0 (e^{-eV/kT}-1)$
 - (d) $I = I_0 (e^{eV/kT} 1)$
- 68. Which of the following is false?
 - (a) A.1=A Ab A.Ā=1 0 1 -> S
 - (c) $A + \overline{A} = 1$
 - (d) A + 1 = 1
- 69. At normal room-temperature the band-gap of GaAs is approximately -
 - (a) 0.75 eV
 - (45) 1.15 eV
 - (c) 0.90 eV
 - (d) 1.43 eV
- 70. Faraday's law relates electric field \vec{E} and magnetic field \vec{B} as -
 - (a) $\oint_c \vec{E} \cdot d\vec{r} = -\frac{d}{dt} \int_s \vec{B} \cdot d\vec{s}$
 - (b) $\oint_{c} \vec{E} \cdot d\vec{r} = -\int_{c} \vec{B} \cdot d\vec{s}$
 - (c) $\oint_c \vec{E} \cdot d\vec{r} = \frac{d}{dt} \int_s \vec{B} \cdot d\vec{s}$
 - (d) $\oint_{c} \vec{E} \cdot d\vec{r} = \int_{c} \vec{B} \cdot d\vec{s}$

- अधिक नामकीय स्थिरता के लिए जादुई संख्याएं हैं —
 - (a) 2, 8, 20, 50, 60, 126
 - (b) 2, 8, 18, 50, 82, 126
 - (c) 2, 8, 20, 50, 82, 126
 - (d) इनमें से कोई नहीं
 - V वोल्ट विभवांतर पर त्वरित इलेक्ट्रॉन का डी-ब्रोगली तरंगदैर्ध्य है –
 - (a) $\sqrt{\frac{12.5}{v}}$ Å
 - (b) $\sqrt{\frac{150}{V}}$ Å
 - (c) $\frac{hv}{\sqrt{2mkT}}$
 - (d) $\frac{h}{\sqrt{2mV}}$
- 67. पी.एन. युग्म में प्रवाहित धारा का मान होगा -
 - (a) $I = I_0 (e^{eV/kT} + 1)$
 - **(b)** $I = I_0 (e^{-eV/kT} + 1)$
 - (c) $I = I_0 (e^{-eV/kT}-1)$
 - (d) $I = I_0 (e^{eV/kT} 1)$
- 68. निम्न में कौन-सा गलत है?
 - (a) A.1 = A
 - (b) $A \cdot \overline{A} = 1$
 - (c) $A + \overline{A} = 1$
 - (d) A + 1 = 1
- 69. सामान्य कमरे के ताप पर GaAs का ऊर्जा अन्तराल लगभग होगा –
 - (a) 0.75 eV
 - (b) 1.15 eV
 - (c) 0.90 eV
 - (d) 1.43 eV
- 70. फैराडे का नियम विद्युत क्षेत्र E एवं चुम्बकीय क्षेत्र
 B में निम्न सम्बन्ध दर्शाता है
 - (a) $\oint_c \vec{E} \cdot d\vec{r} = -\frac{d}{dt} \int_s \vec{B} \cdot d\vec{s}$
 - (b) $\oint_{c} \vec{E} \cdot d\vec{r} = -\int_{s} \vec{B} \cdot d\vec{s}$
 - (c) $\oint_C \vec{E} \cdot d\vec{r} = \frac{d}{dt} \int_S \vec{B} \cdot d\vec{s}$
 - (d) $\oint_{C} \vec{E} \cdot d\vec{r} = \int_{S} \vec{B} \cdot d\vec{s}$

- The total induction of two coupled coils in positive coupling and negative coupling are 1.6 mH and 0.8 mH respectively. The value of mutual inductance will be -
 - (a) 0.2 mH
- atb = 1.6
- (b) 0.4 mH
- (c) 4 mH
- (d) 2 mH
- Which of the following reaction is permitted?
 - (a) $p \rightarrow n + e^+ +$
 - (b) $p \rightarrow e^+ + \nu +$
 - (c) $p \rightarrow \pi^+ + \gamma +$
 - (d) $\bar{p} + n \rightarrow \pi^- + \pi^0$
- Which of the following gates is universal gate?
 - (a) XOR
 - ANT NOR
 - (c) NOT
 - AND (d)
- The short wavelength limit of X-ray depends on -
 - (a) Nature of target
 - (b) Potential applied on X-ray
 - Nature of filament (c)
 - (d) None of the above
- Sweep voltage used in CRO is of type -
 - (a) Square wave
 - (b) Rectangular wave
 - (c) Sawtooth wave
 - (d) Sine wave
- Which of the following can produce 76. magnetic field?
 - (a) Capacitor
 - (b) Electric dipole
 - (c) Diamagnetic substance
 - Time varying electric field

- दो युग्मित कुंडलियों का धनात्मक युग्मन तथा 71. ऋणात्मक युग्मन में कुल प्रेरकत्व क्रमशः 1.6 mH तथा 0.8 mH है। परस्पर प्रेरकत्व का मान है -
 - 0.2 mH (a)
 - 0.4 mH (b)
 - (c) 4 mH
 - 2 mH (d)
- निम्न में कौन-सी अभिक्रिया सम्भव है?
 - (a) $p \rightarrow n + e^+$
 - $p \rightarrow e^+ + \nu$ (b)
 - $p \rightarrow \pi^+ + \gamma$
 - (d) $\bar{p} + n \rightarrow \pi^- + \pi^0$
- निम्न में कौन-सा गेट सार्वभौमिक गेट है? 73.
 - XOR (a)
 - (b) NOR
 - NOT (c)
 - (d) AND
- X किरणों की निम्न तरंगदैर्ध्य सीमा निर्भर करती 흥 -
 - लक्ष्य की प्रकृति पर (a)
 - (b) X किरण ट्यूब के विभव पर
 - (c) फिलामेन्ट की प्रकृति पर
 - (d) इनमें से कोई नहीं
- सी,आर.ओ. में प्रसर्प वोल्टता का स्वरूप होता है -75.
 - (a) वर्गाकार तरंग
 - (b) आयताकार तरंग
 - (c) आरादंती तरंग
 - (d) ज्या तरंग
- निम्न में से कौन चुम्बकीय क्षेत्र जनित कर सकता 76. 彰?
 - (a) संधारित्र
 - · (b) विद्युत द्विध्रुव
 - प्रतिचुम्बकीय पदार्थ
 - समय परिवर्तित विद्युत क्षेत्र (d)

- 77. The existence of discrete energy levels in Hg atoms was established by -
 - (a) Stern Gerlach experiment
 - (b) Thomson experiment
 - (c) Frank and Hertz experiment
 - (d) Rutherford experiment ∞
- 78. Spin of Boson is equal to /
 - (b) integer
 - (c) positive integral multiple of $\frac{1}{2}$ \angle
 - (d) any fraction
- 79. An electron is injected into a region of magnetic flux density with components of velocity parallel to and normal to the flux. The path of the electron is
 - (a) helix
 - (b) parabola
 - (c) straight line
 - (d) circle

In a waveguide which condition will always hold good?

- (a) Phase velocity = c
- (b) Phase velocity > c
- (c) Phase velocity < c
- (d) Group velocity = c
- 81. If 50kV is applied in an X-ray tube, the minimum wavelength for X-rays will be nearly 13.4
 - (a) 3 nm
 - (b) 2 nm
 - (C) 0.2 Å
 - (d) 2 Å

According to modified Ampere's law -

- $(a) \quad \text{curl } \vec{B} = \mu_0 \left(\vec{J}_{\text{free}} + \vec{J}_{\text{d}} \right)$
 - (b) curl $\vec{B} = \mu_0 (\vec{J}_{free} \vec{J}_d)$
- (c) curl $\vec{E} = \mu_0 (\vec{J}_{free} + \vec{J}_d) \gamma$
- (d) curl $\vec{E} = \mu_0 (\vec{J}_{free} \vec{J}_d)$
- PXF =

- 77. पारे के परमाणु में विविक्त ऊर्जा स्तरों का अस्तित्व किस प्रयोग से सिद्ध हुआ?
 - (a) स्टर्न गेरलाक प्रयोग
 - (b) थॉमसन प्रयोग
 - (c) फ्रेंक एवं हर्ट्ज़ प्रयोग
 - (d) रदरफोर्ड प्रयोग
- 78. बोसॉन की स्पिन बराबर होती है -
 - (a) धनात्मक पूर्णांक
 - (b) पूर्णांक
 - (c) ½ का धनात्मक पूर्णीक गुणज
 - (d) कोई भिन्न
- 79. एक इलेक्ट्रॉन किसी एक समान चुम्बकीय फ्लक्स घनत्व में प्रवेश कराया जाता है, जिसका वेग अवयव फ्लक्स के समान्तर एवं लम्बवत् दिशा में है। इलेक्ट्रॉन का पथ है –
 - (a) कुंडलीनुमा
 - (b) परवलयाकार
 - (c) सीधी रेखा
 - (d) वृत्त
- 80. एक वेवगाइड में कौन-सी शर्त हमेशा लागू होगी?
 - (a) कला वेग = c
 - (b) कला वेग > c
 - (c) कला वेग < c
 - (d) समूह वेग = c
- 81. एक X-किरण परिनालिका पर 50kV विभव आरोपित है, तब उत्पन्न X-किरण की निम्नतम तरंगदैर्ध्य लगभग है –
 - (a) 3 नैनो मी.
 - (b) 2 नैनो मी.
 - (c) 0.2 Å
 - (d) 2 Å
- 82. संशोधित एम्पीयर के नियम के अनुसार -
 - (a) curl $\vec{B} = \mu_0 (\vec{J}_{free} + \vec{J}_d)$
 - (b) curl $\vec{B} = \mu_0 (\vec{J}_{free} \vec{J}_d)$
 - (c) eurl $\vec{E} = \mu_0 (\vec{J}_{free} + \vec{J}_d)$
 - (d) curl $\vec{E} = \mu_0 (\vec{J}_{free} \vec{J}_d)$

- What is the value of Compton shift? 83.
 - (a) (1 − cos∅)
 - (b) $\frac{h}{m_0c}(1+\cos\emptyset)$

 $(1 - \cos \emptyset)$

- (d) $\frac{m_0c}{h}(1-\cos\emptyset)$
- If a charge 'Q' is placed at the centre of a cubical box, the value of total flux that is coming out will be -

(a) Q ε0

- Q 680
- (c)
- (d)
- At low temperature the lattice specific heat of solids varies as -
 - T^3

 - T
 - (d)
 - Match column-I with column-II and select the correct answer from code -

	Column-I		
4	Matter wave	7	

- В Electric charge,
- Diffraction Bragg's law-C
- D

Column-II

- X-rays Rutherford
- α-scattering

Code -

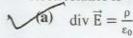
- D 4 2 3 (a) 1 2 (b) 23 (c)
- The Clausius Mossotti relation holds best 87.

for -Solids (2)

- Polar molecules (b)
- Gases and dilute solutions (c)
- Concentrate solutions

- कॉम्पटन शिपट का मान क्या होगा? 83.
 - $(1 \cos\emptyset)$
 - $\frac{h}{m_0c}(1+\cos\emptyset)$
 - $\frac{h}{m_0c}(1-\cos\emptyset)$
 - (d) $\frac{m_0c}{h}(1-\cos\emptyset)$
- यदि आवेश 'Q' घनाकार पेटिका के केन्द्र में रखा 84. गया है, तो उससे बाहर जाने वाला कुल फ्लक्स
 - Q (a)
 - Q (b) 680
 - (c)
 - (d)
 - निम्न ताप पर ठोस के जालक की विशिष्ट ऊष्मा बदलती है, ऐसे -
 - (a) T³ के अनुसार
 - (b) $\frac{1}{T^3}$ के अनुसार
 - (c) T के अनुसार
 - (d) $\frac{1}{T}$ के अनुसार
 - स्तम्म–1 का स्तम्भ–11 से मिलान कर कोड से सही उत्तर पाप्त करें -

स्तम्भ-I		स्तम्भ-II
द्रव्य तरंग	1	X-किरण
विद्युत आवेश	2	रदरफोर्ड
ब्रैग का नियम	3	विवर्तन
α-प्रकीर्णन	4	क्वॉन्टीकृत
	द्रव्य तरंग विद्युत आवेश ब्रैग का नियम	द्रव्य तरंग 1 विद्युत आवेश 2 ब्रैग का नियम 3


- (a) (b) 2 2
- क्लॉसियस-मोसोटी सम्बन्ध सबसे अच्छा लागू होता है
 - ठोस में (a)
 - ध्रुवीय अणुओं में (b)
 - गैसों एवं तरल विलयनों में (c)
 - सान्द्र विलयनों में (d)

Adda 247

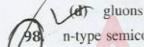
88. Zero point energy is consequence of -

- Particle nature of the waves
- - Wave nature of the particles
 - Relativistic mass variation (c)
 - Energy at temperature 0°K
- 89. The mean value of position (x) for an electron in the ground state of hydrogen atom is (where ao is the Bohr radius) -
 - (a) $\langle x \rangle = a_0$
 - **(b)** $< x > = \frac{2}{3}a_0$
 - (c) $\langle x \rangle = \frac{1}{2} a_0$
 - (d) $\langle x \rangle = \frac{3}{2} a_0$
- 90. The half life of a radio-active element depends upon -
 - Amount of element present
 - Temperature
 - Pressure (c)
 - None of these
- The mathematical statement of Gauss law in 91. electrostatics is -

- (b) curl $\vec{E} = \frac{\rho}{\epsilon_0}$
- (c) $\vec{D} = \epsilon_0 \vec{E} + \vec{P}$
- curl $\vec{E} = -\frac{\partial \vec{B}}{\partial t}$
- 92. For detection of light intensity, we use -
 - LED in forward bias
 - LED in reverse bias
 - Photodiode in forward bias
 - Photodiode in reverse bias
- 93. Selection rules for pure Rotational Raman spectrum are -
 - (a) $\Delta l = 0, \pm 1$
 - (b) $\Delta J = 0, \pm 1$
 - (c) $\Delta l = 0, \pm 2$
 - (d) $\Delta J = 0, \pm 2$

- शून्य बिन्द् ऊर्जा परिणाम है -88.
 - (a) तरंगों के कण प्रकृति का
 - (b) कणों के तरंग प्रकृति का
 - सापेक्षीय द्रव्यमान परिवर्तन का
 - (d) 0°K ताप पर ऊर्जा का
- हाइड्रोजन परमाण् के निम्नतम अवस्था में इलेक्ट्रॉन 89. की स्थिति (x) का औसत मान होता है (जहाँ ao बोर त्रिज्या है) -
 - (a) $< x > = a_0$
 - (b) $\langle x \rangle = \frac{2}{2} a_0$
 - (c) $\langle x \rangle = \frac{1}{2} a_0$
 - (d) $\langle x \rangle = \frac{3}{2} a_0$
- किसी रेडियो-एक्टिव तत्व की अर्द्ध आयु निर्भर 90. करती है –
 - (a) उपस्थित तत्व की मात्रा पर
 - (b) तापमान पर
 - (c) दाब पर
 - (d) इनमें से कोई नहीं
- वैद्युत स्थैतिकी में गाउस के नियम का गणितीय कथन होगा -
 - $\operatorname{div} \vec{E} = \frac{\rho}{\epsilon_0}$
 - (b) curl $\vec{E} = \frac{\rho}{\epsilon_0}$
 - (c) $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$
 - $\operatorname{curl} \ \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
- प्रकाश तीव्रता के अभिज्ञान के लिए, हम उपयोग 92. करते हैं -
 - अग्र अभिनत में LED (a)
 - (b) व्युत्क्रम अभिनत में LED
 - अग्र अभिनत में फोटोडायोड (c)
 - व्युत्क्रम अभिनत में फोटोडायोड (d)
- शुद्ध घूणी रमन स्पेक्ट्रा का चयन नियम है -93.
 - (a) $\Delta l = 0, \pm 1$
 - (b) $\Delta J = 0, \pm 1$
 - (c) $\Delta l = 0, \pm 2$
 - $\Delta J = 0, \pm 2$

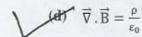
94. Bohr magneton is given by -


 $\mu_B = \frac{eh}{4\pi m}$

- (b) $\mu_B = \frac{eh}{\pi m}$
- $\mu_B = \frac{\pi m}{2\pi m}$ $\mu_B = \frac{eh}{2\pi m}$
 - (d) $\mu_B = \frac{eh}{8\pi m}$
- 95. In a solenoid, magnetic field is maximum
 - (a) its centre
 - (b) its ends (c) away from it
 - (d) None of the above

For a 1m long solenoid, if n=500 and I=5 Amp, then calculate 'B' at its centre A

- (a) $3.14 \times 10^{-3} \text{ Weber/m}^2$
- (b) 3.14 Weber/m²
- (c) $3.14 \times 10^{-2} \text{ Weber/m}^2$
- (d) $3.14 \times 10^{-7} \text{ Weber/m}^2$
- 47 7
- 97. The elementary particles responsible for holding nucleons together, within atomic nuclei are -
 - (a) neutrinos
 - (b) leptons
 - (c) mesons



n-type semiconductor is obtained by doping 98.
of Germanium with impurity of-

- (a) Aluminium 3x
- (b) Indium In
- (c) Arsenic An

(a) Gallium Ga As

- 99. Which of the following is not correct?
 - (a) $\vec{\nabla} \times \vec{B} = \mu_0 \left(\vec{J} + \frac{\partial \vec{D}}{\partial t} \right)$
 - (b) $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$
 - (c) $\vec{\nabla} \cdot \vec{B} = 0$

- 94. बोर मैगनेटॉन का प्रारूप है -
 - (a) $\mu_B = \frac{eh}{4\pi m}$
 - (b) $\mu_B = \frac{eh}{\pi m}$
 - (c) $\mu_B = \frac{eh}{2\pi m}$
 - (d) $\mu_B = \frac{eh}{8\pi m}$
- 95. एक परिनालिका में चुम्बकीय क्षेत्र अधिकतम होता है —
 - (a) इसके केन्द्र पर
 - (b) इसके किनारों पर
 - (c) इससे दूर

96.

- (d) इनमें से कोई नहीं
- 1मी. लम्बी परिनालिका के लिए, यदि n=500 एवं 1=5 एम्पीयर हो, तो इसके मध्य में 'B' का मान ज्ञात करिए —
 - (a) 3.14 × 10⁻³ वेबर / मी.²
 - (b) 3.14 वेबर / मी.²
 - (c) 3.14×10^{-2} वेबर / मी.²
 - (d) 3.14×10^{-7} वेबर / मी.²
- परमाणु नाभिक के अन्दर नाभकीय कणों को एक साथ रखने वाले, प्रारम्भिक कण हैं –
 - (a) न्यूट्रिनो
 - (b) लेप्टॉन
 - (c) मीसॉन
 - (d) ग्लूऑन
- 98. जर्मेनियम में किस अशुद्धि को डोपिंग से n-प्रकार का अर्धचालक प्राप्त होगा
 - (a) एल्युमिनियम
 - (b) इन्डियम
 - (c) आर्सेनिक
 - (d) गैलियम
- 99. निम्न में क्या सही नहीं है?
 - $(a) \quad \overrightarrow{\nabla} \times \overrightarrow{B} = \mu_0 \left(\overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t} \right)$
 - (b) $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$
 - (c) $\vec{\nabla} \cdot \vec{B} = 0$
 - (d) $\vec{\nabla} \cdot \vec{B} = \frac{\rho}{\epsilon_0}$

100.	Radioactive substances do not exit-	100.	रेडियोएक्टिव पदार्थ उत्सर्जित नहीं करते -
	(a) α-rays		(a) α-किरण
	(b) β-rays_		(b) β-किरण
	(c) Positrons		(c) पॉज़िट्रॉन
1	(d) Protons		(d) प्रोटॉन
,101.	On inserting a plate of dielectric between the	101.	एक समान्तर प्लेट संधारित्र की पट्टिकाओं के बीच
3/1	plates or a parallel plate condenser the stored		एक परावैद्युत पदार्थ की पट्टिका को डालने पर
/	energy is increased by 3 times. The dielectric		भण्डारित ऊर्जा तीन गुना बढ़ जाती है। पदार्थ का
CLL	constant of the material is -		परावैद्युत स्थिरांक है -
EN EV	FX TK		(a) 1/2
E 1E	1(b) 1 5 V		(b) $\frac{3}{1}$
5	6 5 - 7		6
Er a	EL K2 3	-KI	(c) 9
12	2·(1) 3 K2 = EK1 T	ĺ	(d) 3
3 102.	Which of the following is used for generation	102.	निम्न में कौन-सा उपकरण स्पन्दन उत्पन्न करने
En 2 3	of pulse?		में प्रयुक्त होता है? (a) डायोड
	(a) Diode		(b) सी.आर.ओ.
26	(b) CRO		(c) मल्टी वाइब्रेटर
-	(c) Multi vibrator (d) Transformer		(d) ट्रान्सफॉर्मर
102		103.	द्रव क्रिस्टल में निम्न में कौन मेसोफेज़ को
103.	Which of the following mesophase of a liquid crystal can be used as a temperature sensor?	103.	तापीय-सेन्सर की तरह प्रयोग कर सकते हैं?
	(a) Chiral nematic		(a) काइरल नीमाटिक
	(b) Nematic		
	(c) Smectic A		
	(d) Smectic B		
1			(d) रमेक्टिक B
104.	Avalanche effect occurs in a pn junction,	104.	
	usually when -		मिलेगा –
	(a) depletion layer is thick		(a) अवक्षय पर्त मोटी होने पर
	(b) depletion layer is thin		(b) अवक्षय पर्त पत्तली होने पर
1	with highly doped p & n sides		(c) पी. एवं एन. क्षेत्र में अधिक डोपिंग होने
,			पर
	(d) None of these		(d) इनमें से कोई नहीं
105.	Fermions with $\frac{1}{2}$ spin and non-zero mass are	105.	फर्मिओन्स जिनका स्पिन 🔓 एवं द्रव्यमान अशून्य हो,
	called -		कहलाते हैं -
	(a) Bosons 🗸		(a) बोसॉन्स
	(b) Hyperons		(b) हाईप्रॉन
	((c) Quarks		(c) क्वार्क
	(d) Cascade particles		(d) कैसकेड कण

NOR NAND

106. The output of a NOR gate can be represented 106. एक NOR गेट का निर्गत व्यक्त कर सकते हैं -A+B A.B

(a) $Y = \overline{A} + \overline{B}$

(b) $Y = \overline{A} \cdot \overline{B}$

(c) Y = A + B

(d) $Y = \overline{A.B}$

107. If \vec{D} , \vec{E} and \vec{P} are electric displacement, 107. यदि \vec{D} , \vec{E} एवं \vec{P} क्रमशः वैद्युत विस्थापन, विद्युत electric field intensity and polarization vectors respectively, then their correct relation is -

$$\vec{D} = \varepsilon_0 \vec{E} - \vec{P}$$

(d) $\vec{D} = \epsilon_0 \vec{E} + \vec{P}$

For angular momentum operators value of 108. कोणीय संवेग ऑपेस्टर के लिए [J+, J.] का मान $[J_{+}, J_{-}]$ is -

(symbols have their usual meaning)

(a) $-2hJ_z$

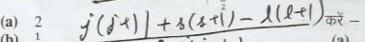
(b) 2 h J_z

(c) h Jz

i h Jz (d)

109. The value of displacement current Ld is -

 $\varepsilon_0 \frac{1}{\partial t}$


a0 /

(a) (b)

110. Expectation value of the distance of electron 110. हाइड्रोजन परमाणु के इलेक्ट्रॉन के नाभिक से दूरी from the nucleus in case of hydrogen atom 2 3 का प्रत्याशित मान है -

3a₀ , (c) 2a0 (d)

111. Calculate Lande g-factor for state $|^2P_3|^2$ अवस्था ²P₃ के लिए लैन्डे g-गुणक की गणना

Page 20 of 24

(a) $Y = \overline{A} + \overline{B}$

(b) $Y = \overline{A} \cdot \overline{B}$

Y = A + B

(d) $Y = \overline{A \cdot B}$

क्षेत्र तीव्रता एवं धुवण सदिश हैं, तब इनका सही सम्बन्ध है -

(a) $\vec{D} = \varepsilon_0 \vec{E} - \vec{P}$

(b) $\vec{D} = \varepsilon_0 (\vec{E} - \vec{P})$

 $\begin{array}{ll} (c) & \overrightarrow{D} = \epsilon_0 \big(\overrightarrow{E} + \overrightarrow{P} \big) \\ (d) & \overrightarrow{D} = \epsilon_0 \overrightarrow{E} + \overrightarrow{P} \ \big| \end{array}$

(प्रतीकों के सामान्य अर्थ हैं)

(a) $-2hJ_z$

 $2 h J_z$ (b)

(c) $h J_z$

(d) i h Jz

विस्थापन धारा Id का मान होता है 109.

- 112. In nuclear reactions the conversion of -
 - Mass only
 - Energy only (b)
 - Momentum only

Mass, energy and momentum

- 113. Which of the following cannot represent an 113. निम्न में से कौन एक समुचित तरंग फलन को नहीं appropriate wave function, A & α are constants?
 - (a) A sin α x
 - (b) A cos α x
 - A e^{-iαx}
 - A eax

Which of the following is correct?

- (a) [L², L_x] ≠ 0 and [L_z, Z] = 0
- (b) $[L_x, L_y] = 0$ and $[L^2, L_x] = 0$
- (c) $[L^2, L_x] = 0$ and $[L_z, Z] = 0$
- (d) $[L_x, L_y] = 0$ and $[L_z, P_z] = i\hbar$

(Given $10^{0.1} \approx 1.26$)

(a) 50%

- 35% (b)
- (c) 26%
- (d) 12%
- 116. The unit of poynting vector is -
 - Watt

Watt / meter²?

- Watt meter (c)
- Newton
- 117. The dominant TE mode in rectangular wave 117. guide is -
 - ← (a) TE₁₁
 - TE20 7 (b)
 - TE00. (c)
 - (d) TE₁₀

118. A transistor having $\alpha = 0.975$ and negligible 118. reverse saturation current is operated in

Common Emitter configuration (CE) mode. If $I_B=250\mu A$, I_C will be - β =

(a) 10.45 mA 7) (b) 10.15 mA Lc:

(c) 9.35 mA (d) 9.75 mA

= 3.75 X 103 MA

[TETS21]-D

Page 21 of 24

- नाभकीय अभिक्रिया में परिवर्तित होता है -112.
 - (a) केवल द्रव्यमान
 - (b) केवल ऊर्जा
 - (c) केवल संवेग
 - (d) द्रव्यमान, ऊर्जा और संवेग
- दर्शाता है, A तथा α नियतांक हैं?
 - (a) A sin a x
 - (b) A cos a x
 - A e-icx (c)
 - A eax
- 114. निम्नलिखित में कौन-सा सत्य है?
 - (a) [L², L_x] ≠ 0 और [L_z, Z] = 0
 - (b) [Lx, Ly] = 0 और [L², Lx] = 0
 - (c) $[L^2, L_x] = 0$ और $[L_z, Z] = 0$
 - (d) $[L_x, L_y] = 0$ और $[L_z, P_z] = i\hbar$
- l dB corresponds to change in power level by 115. l dB के तुल्य शक्ति स्तर में परिवर्तन होता है (दिया है 10^{0.1} ≈ 1.26) -
 - 50% (a)
 - (b) 35%
 - 26% (c)
 - 12% (d)
 - प्वॉइन्टिंग वेक्टर का मात्रक है -
 - वॉट
 - (b) वॉट / मीटर²
 - (c) वॉट मीटर
 - (d) न्यूटन
 - आयताकार तरंग-पथ-निधारित में प्रमुख TE विधा (मोड) होती है
 - (a) TE11
 - TE20 (b)
 - TE₀₀ (c)
 - (d) TE₁₀

एक ट्रान्जिस्टर के लिए α=0.975 है तथा विपरीत संतुप्त धारा नगण्य है। इसको उभयनिष्ट उत्सर्जक विन्यास (CE) मोड में प्रयोग किया गया है। यदि I_B=250µA हो, तो I_C का मान होगा -

- (a) 10.45 मिली एम्पियर
- (b) 10.15 मिली एम्पियर
- (c) 9.35 मिली एम्पियर
- (d) 9.75 मिली एम्पियर

(0-75-1) =-0.25

119.	The permeability of a magnetic material is 0.74. The material is -	119.	पदार्थ है -
	(a) paramagnetic		(a) अनुचुम्बकीय
	diamagnetic		(b) प्रतिचुम्बकीय
	(c) ferromagnetic		(c) लौह—चुम्बकीय
	(d) None of the above		(d) इनमें से कोई नहीं
120.	small area ds is given by -	120.	अल्प क्षेत्र ds से गुजरने वाले वैद्युत क्षेत्र E का वैद्युत फ्लक्स होता है –
	S (a) Ē. ds ✓		(a) E .ds
1	2(b) ∮ _s Ē.dš		(b) $\oint_{S} \vec{E} \cdot d\vec{s}$
	(c) $\varepsilon_0 \vec{E} \cdot d\vec{s}$		
			(c) $\varepsilon_0 \vec{E} \cdot d\vec{s}$
0.12520.00			(d) $\vec{E} \times d\vec{s}$
121.	The value of $\langle \frac{1}{r} \rangle$ in the $\Psi_{100}(r, \theta, \emptyset)$ state of a	121.	हाइड्रोजन परमाणु के लिए अवस्था $\Psi_{100}(\mathbf{r},\theta,\emptyset)$
	hydrogen atom is (a ₀ is Bohr radius) -		में (=) का मान है (a0 बोर त्रिज्या है) -
	(a) a ₀ ≺		(a) a ₀
	(b) <u>1</u> 7		(b) 1
	(c) 0 7		a ₀
	(c) 0 (d) $\frac{1}{1}$		(c) 0
	$\frac{(\mathbf{d})}{2a_0}$		(d) $\frac{1}{2a_0}$
122	Francisco of Parks of the Control of	400	
122.	Frequency of light sufficient for creation of electron – hole pair in GaAs (Eg = 1.42 eV) is -	122.	GaAs (Eg = 1.42 eV) में इलेक्ट्रॉन — होल युग्म उत्पन्न करने के लिए प्रकाश की आवश्यक आवृत्ति होगी —
	(a) 1.42 MHz		(a) 1.42 MHz
	(b) 3.43 MHz		(b) 3.43 MHz
	(c) 1.42×10 ¹⁴ Hz		(c) 1.42×10 ¹⁴ Hz
	(d) $3.43 \times 10^{14} \text{Hz}$		(d) $3.43 \times 10^{14} \text{Hz}$
123.	What is the particle X in the following	123	
	puclane reaction? 43	1	है?
	$4B_e^9 + {}_2He^4 \rightarrow {}_6C^{12} + X^1$		
	(a) Electron 6		$4B_e^9 + _2He^4 \rightarrow _6C^{12} + X$ (a) इलेक्ट्रॉन
	(b) Proton		(b) प्रोटॉन
	Ver Neutron		(c) न्यूट्रॉन
	(d) Meson		(d) मीसॉन
124.	The particles heavier than nucleons are	124.	न्यूक्लिऑन से अधिक द्रव्यमान वाले कण कहलाते
	called -	141.	हैं -
	(a) Hyperons		
	(b) Leptons		
	(C) Gravitons		
	(d) Mesons		
			(d) मीसॉन
125.	Maximum change in wavelength in a	125.	
	Compton scattering is - 2.0.034		परिवर्तन होता है -
	(a) 0.0243 A	51	(a) 0.0243 Å
	(b) 0.2430 Å	9	(b) 0.2430 Å
	(e) 0.0486 Å		(c) 0.0486 Å

(d) 0.4860 Å

(d) 0.4860 Å