VIDEO COURSES
for Government Exams

From the oldest and most trusted name in Exam Preparation which gave us Career Power, Banker-sadda, Sscadda, here is the latest offering – Video Courses that are tailor-made for the Govt. Job aspirants of digital India. Various banking and SSC exams are conducted online with regular changes to exam pattern and level of questions. We understand the changing needs of the students and have devised a unique solution, making preparation easy, cost-effective and efficient.

Video courses for Banking and SSC consist of exhaustive video lectures for government exams. We offer these courses in three variants: Online Streaming, SD Card and Android Tab + SD-Card. The SD Card can be run on your personal android device as well. The video courses will run on the Adda247 mobile app, the number one App for Bank and SSC exam preparation.

Available Courses

Banking Courses

- IBPS PO Pre
- IBPS PO Complete Kit
- RRB Mains Complete Kit
- IBPS PO Pre + Mains
- IBPS PO: Quantitative Aptitude
- IBPS RRB Pre - Quant + Reasoning

SSC Courses

- Maths for SSC CGL Mains
- English + Maths for SSC CGL Mains
- English for SSC CGL Mains
- IB ACIO (Tier I) + SSC Complete KIT

To Purchase visit: store.adda247.com
For any query: Call us at +91-90691 42412 • Email us at elearning@adda247.com

Adda247 | No. 1 APP for Banking & SSC Preparation
Website: bankersadda.com | sscadda.com | store.adda247.com | Email: contact@bankers.com
S66. Ans.(c)
Sol.
Required difference = 25 + 75 − 45 − 50 = 5

S67. Ans.(a)
Sol.
Total number of pens sold on Saturday = 30 × 1.4 = 42
Total number of pens sold on Friday and Saturday together = 50 + 42 = 92

S68. Ans.(d)
Sol.
Total number of pens sold on Sunday = \[\frac{75}{125} \times 100 = 60\]

S69. Ans.(b)
Sol.
Blue ink pen sold on Thursday = \[45 \times \frac{20}{100} = 9\]
Red ink pen sold on Thursday = \[(45 - 9) \times \frac{25}{100} = 9\]
Black ink pen sold on Thursday = \[(45 - 9) \times \frac{75}{100} = 27\]
Total number of blue and black ink pen sold on Thursday = 9 + 27 = 36

S70. Ans.(e)
Sol.
Total number of non-defective pens sold on Tuesday = \[\frac{75}{15} \times 8 = 40\]

S71. Ans.(c)
Sol.
Quantity I.
\[x^2 + x - 6 = 0\]
\[x^2 + 3x - 2x - 6 = 0\]
\[x(x + 3) - 2(x + 3) = 0\]
\[(x + 3)(x - 2) = 0\]
\[x = -3, 2\]
Quantity II.
\[y^2 + 7y + 12 = 0\]
\[y^2 + 4y + 3y + 12 = 0\]
\[(y + 4)(y + 3) = 0\]
\[y = -4, -3\]
Quantity I ≥ Quantity II
S72. Ans.(b)
Sol.
A’s efficiency = 5
B’s efficiency = 4
Let total work = 60
Quantity I : A can do $\frac{5}{6}$ of work in $\rightarrow \frac{50}{5} = 10$ d
Quantity II : B can do $\frac{4}{5}$ of work in $\rightarrow \frac{48}{4} = 12$ d
Quantity II > Quantity I

S73. Ans.(a)
Sol.
Let numbers be x, x+2, x+4, x+6, x+8, x+10, x+12, x+14
Quantity I → $x + 2 + x + 14 = 2x + 16$
Quantity II → $x + 4 + x + 10 = 2x + 14$
Quantity I > Quantity II

S74. Ans.(b)
Sol.
SP = 1500
Let, MP = x
Quantity I = 550
Quantity II
$7 \times \frac{8}{x} = 1500$
$x = \frac{1500 \times 8}{7}$
$x = \frac{12000}{7}$
Quantity II > Quantity I

S75. Ans.(e)
Sol.
Quantity I :
Let speed of current = x
speed of boat = x + 5x
downstream speed = 7x
$\frac{63}{7x} = 3$
x = 3
Upstream speed = 6x - x
= 5x
$= 15 \text{ km/hr}$

Quantity I = Quantity II

S76. Ans.(c)
Sol.

S77. Ans.(a)
Sol.

S78. Ans.(e)
Sol.

S79. Ans.(d)
Sol.

Volume of cylinder (s) = $\pi r^2 h$
(r → radius)
(h \rightarrow \text{height})

\text{Volume of cone (c)} = \frac{1}{3} \pi R^2 H

(R \rightarrow \text{radius})

(H \rightarrow \text{height})

h = H = 10 \text{ cm}

\text{ATQ,}

\pi r^2 h + \frac{1}{3} \pi R^2 h = 2190 \pi

\pi \times 10 \left[r^2 + \frac{1}{3} \times 15 \times 15 \right] = 2190 \pi

r = 12

\Rightarrow \frac{r}{R} = \frac{12}{15} = 4 : 5

S82. Ans.(c)

\text{Sol.}

\text{Atq,}

\frac{X}{X + 16} = \frac{1}{3}

3X = X + 16

X = 8

\therefore \text{sum of red & blue balls} = 8 + 6 = 14

S83. Ans.(a)

\text{Sol.}

\text{Let present age of A be x yrs}

& \text{present age of B be y yrs.}

\text{ATQ,}

x + y = 88 + 12

x + y = 100 \quad \text{...(i)}

x - 18 = y - 6

x - y = 12 \quad \text{...(ii)}

\text{solving (i) & (ii)}

x = 56

\therefore \text{age of A 2 year hence} = 58 \text{ yrs}

S84. Ans.(b)

\text{Sol.}

\text{Let speed of train A be S}

S \times 18 = 360

S = 20 \text{ m/s}
A : B = 4 : 5
Speed of B = 25 m/s
Length of train B = 25 × 12 = 300 m

S85. Ans.(b)
Sol.
Total numbers of ways → 7!
Favorable numbers of ways → 5! × 3!
Probability → \(\frac{5! \times 3!}{7!} = \frac{1}{7} \)

S86. Ans.(d)
Sol.
\[2^2 = 32.01 \div 128.01 \times 1023.99 \div 7.99 \]
\[2^2 \approx \frac{32}{128} \times \frac{1024}{8} \]
\[2^2 \approx 32 \]
\[2^2 \approx 2^5 \]
? ≈ 5

S87. Ans.(a)
Sol.
\[\sqrt{339.99} = \sqrt{143.99} + \sqrt{64.01} \]
\[\sqrt{340} \approx \sqrt{144} + \sqrt{64} \]
\[\sqrt{340} \approx 12 + 8 \]
\[\sqrt{340} \approx 20 \]
17 ≈ ?

S88. Ans.(e)
Sol.
34.02% of 550.09 ÷ ? = 297.07 ÷ \(\sqrt{728.95} \)
\[34 \times 550 \frac{100}{187} \div ? \approx 297 \div \sqrt{729} \]
\[? \approx \frac{297}{27} \]
? ≈ 17

S89. Ans.(a)
Sol.
\[(\div 9.97) \times 12.08 \approx 20.12\% \text{ of } 1319.97 \]
\[(\div 10) \times 12 \approx \frac{20 \times 1320}{100} \]
\[? \approx \frac{264}{12} \times 10 \approx 220 \]
S90. Ans.(d)
Sol.
\[\% \text{ of } 179.99 = \sqrt{(24.02)^2 + (17.98)^2} + 60.01\% \text{ of } 659.98 \]
\[\% \text{ of } 180 \approx \sqrt{(24)^2 + (18)^2} + 60\% \text{ of } 660 \]
\[\frac{2}{100} \times 180 \approx \sqrt{576 + 324 + 396} \]
\[\frac{2}{100} \times 180 \approx \sqrt{1296} \]
\[\% \approx \frac{36}{180} \times 100 \]
\[\% \approx 20 \]

S91. Ans.(c)
Sol.
Total number of workers in company A and C together
\[= 900 \times \frac{32}{100} + 900 \times \frac{24}{100} \]
\[= 288 + 216 \]
\[= 504 \]
Total number of officers in company A and C together
\[= 900 \times \frac{32}{100} \times \frac{1}{16} + 900 \times \frac{24}{100} \times \frac{1}{12} \]
\[= 18 + 18 = 36 \]
Required Ratio = \[\frac{504}{36} \]
\[= \frac{14}{1} \]

S92. Ans.(e)
Sol.
Total number of employees in company B
\[= 900 \times \frac{44}{100} \times \frac{19}{18} = 418 \]
Total number of employees in company C
\[= 900 \times \frac{24}{100} \times \frac{13}{12} = 234 \]
Required difference = 418 – 234 = 184

S93. Ans.(a)
Sol.
Total number of officers in Company ‘A’ = \[900 \times \frac{32}{100} \times \frac{1}{16} = 18 \]
Total number of officers in Company ‘B’ = \[900 \times \frac{44}{100} \times \frac{1}{18} = 22 \]
Required difference = 22 – 18 = 4
S94. Ans.(b)
Sol.
Total number of officers in company C
\[= 900 \times \frac{24}{100} \times \frac{1}{12}\]
\[= 18\]
Total number of workers in company C
\[= 900 \times \frac{24}{100} = 216\]
Total number of employees in company D
\[= 216 \times 1.25 + 18 \times 1.5 = 270 + 27 = 297\]

S95. Ans.(d)
Sol.
Required difference
\[= \frac{900}{100} \times (44 + 24 - 32) = 9 \times 36 = 324\]

Solution (96-100)
Ratio of profit share of A, B and C is scheme S₁
\[80000 \times 2 : 30000 \times 3 : 50000 \times 5\]
\[16 : 9 : 25\]
Profit share of A from Scheme S₁
\[= \frac{16}{50} \times 200,000\]
\[= 64000\]
Profit share of B from scheme S₁
\[= \frac{9}{50} \times 200,000\]
\[= 36000\]
Profit share of C from scheme S₁
\[= \frac{25}{50} \times 20,000\]
\[= 100,000\]
Ratio of profit share of A and C in scheme S₂
\[30,000 \times 4 : 10,000 \times 3\]
\[12 : 3\]
Profit share of A in scheme S₂
\[= \frac{12}{15} \times 90000\]
\[= 72000\]
Profit share of C in scheme S₂
\[= \frac{3}{15} \times 90,000\]

S96. Ans.(d)
Sol.
Required ratio
\[= (36000 + 10000) : 100,000\]
\[= 46 : 100\]
\[= 23 : 50\]
S97. Ans.(e)
Sol.
Required \% = \frac{64000}{18000} \times 100
= \frac{3200}{9}\%
= 355\frac{5}{9}\%

S98. Ans.(a)
Sol.
Total investment of A = 80,000 + 30,000
= 110,000
Total profit of A = 64000 + 72000
= 136000
Equivalent rate of Interest for 2 year at CI
= 20\% + 20\% + \frac{20 \times 20}{100}
= 44\%
Required CI = \frac{44}{100} (136000 + 110000)
= 108240

S99. Ans.(a)
Sol.
Required average = \frac{64000 + 18000}{2}
= 41000

S100. Ans.(c)
Sol.
\frac{80000 \times R \times 3}{100} - 30000 \times \left(\frac{R + 5}{100}\right) = 30,000
2400R - 300R - 1500 = 30000
8R - R - 5 = 100
7R = 1050
R = 15\%
Compliment your classroom with Banking Video Courses
visit: videocourses.adda247.com

Study on the GO with the Adda247 App

GET IT ON Google Play

Boost your prep with Topic-wise E-books and monthly Magazines
visit: store.adda247.com

Fulfill your Dream of Government Job visit: careerpower.in