VIDEO COURSES

for Government Exams

From the oldest and most trusted name in Exam Preparation which gave us Career Power, Banker-sadda, Sscadda, here is the latest offering – Video Courses that are tailor-made for the Govt. Job aspirants of digital India. Various banking and SSC exams are conducted online with regular changes to exam pattern and level of questions. We understand the changing needs of the students and have devised a unique solution, making preparation easy, cost-effective and efficient.

Video courses for Banking and SSC consist of exhaustive video lectures for government exams. We offer these courses in three variants: Online Streaming, SD Card and Android Tab + SD-Card. The SD Card can be run on your personal android device as well. The video courses will run on the Adda247 mobile app, the number one App for Bank and SSC exam preparation.

Available Courses

Banking Courses

- IBPS PO Pre
- IBPS PO Complete Kit
- RRB Mains Complete Kit
- IBPS PO Pre + Mains
- IBPS PO: Quantitative Aptitude
- IBPS RRB Pre - Quant + Reasoning

SSC Courses

- Maths for SSC CGL Mains
- English + Maths for SSC CGL Mains
- English for SSC CGL Mains
- IB ACIO (Tier I) + SSC Complete KIT

To Purchase visit: store.adda247.com

Adda247 Android App

For any query: Call us at +91-90691 42412 • Email us at elearning@adda247.com
S1. Ans.(e)
Sol.
\[(422 + 478) ÷ ? ≃ 60\]
\[? ≃ \frac{900}{60} = 15\]

S2. Ans.(d)
Sol.
\[? ≃ \sqrt{256 × 19 + 8 × 14}\]
\[? ≃ 16 × 19 + 8 × 14 = 416\]

S3. Ans.(b)
Sol.
\[16 × 24 + ? ≃ 19 × 32\]
\[? = 608 – 384 = 224\]

S4. Ans.(c)
Sol.
\[28 × 16 ≃ ? × 14 + 70\]
\[448 ≃ ? × 14 + 70\]
\[? = \frac{378}{14} = 27\]

S5. Ans.(b)
Sol.
\[272 + 190 + 84 ≃ ? × 13 × 6\]
\[⇒ ? ≃ \frac{546}{13×6} = 7\]

S6. Ans.(c)
Sol.

![Diagram]
S7. Ans. (e)
Sol.
\[
\begin{array}{cccc}
15 & 12 & 31 & 148 \\
\times 1-3 & \times 3-5 & \times 5-7 & \times 7-9 \\
1027 & & & \\
\end{array}
\]

S8. Ans. (b)
Sol.
\[
\begin{array}{cccc}
1 & 13 & 83 & 419 & 1679 \\
\times 7+6 & \times 6+5 & \times 5+4 & \times 4+3 & \times 3+2 \\
5039 & & & & \\
\end{array}
\]

S9. Ans. (a)
Sol.
\[
\begin{array}{cccc}
12 & 25 & 48 & 99 & 194 & 393 \\
\times 2+1 & \times 2-2 & \times 2+3 & \times 2-4 & \times 2+5 & \times 2-6 \\
780 & & & & & \\
\end{array}
\]

S10. Ans. (d)
Sol.
\[
\begin{array}{cccc}
3 & 11 & 31 & 69 & 131 & 223 \\
1^3+2 & 2^3+3 & 3^3+4 & 4^3+5 & 5^3+6 & 6^3+7 \\
\end{array}
\]

S11. Ans. (b)
Sol.
Number of tickets sold to males by C3 and C6 theatre together
\[
= (80 - 20) \times \frac{2}{5} + (80 - 12) \times \frac{9}{17} \\
= 60 \times \frac{2}{5} + 68 \times \frac{9}{17} \\
= 24 + 36 \\
= 60 \\
\]
Number of tickets sold to females by C3 and C5 theatre together
\[
= (80 - 20) \times \frac{3}{5} + (80 - 8) \times \frac{4}{9} \\
= 60 \times \frac{3}{5} + 72 \times \frac{4}{9} \\
= 36 + 32 \\
= 68 \\
\]
Required ratio = \[
\frac{60}{68} = \frac{15}{17}
\]
S12. Ans.(d)
Sol.
Number of female who bought ticket from C2 and C4 theatre together
\[= (80 - 10) \times \frac{4}{7} + (80 - 14) \times \frac{5}{11} \]
\[= 40 + 30 \]
\[= 70 \]
Number of male who bought ticket from C5 theatre
\[= (80 - 8) \times \frac{5}{9} \]
\[= 72 \times \frac{5}{9} \]
\[= 40 \]
Required % = \[\frac{70 - 40}{40} \times 100 \]
\[= \frac{30}{40} \times 100 = 75\% \]

S13. Ans.(c)
Sol.
Total revenue earns by C4 theatre
\[= 14 \times 150 + (80 - 14) \times \frac{6}{11} \times 200 + (80 - 14) \times \frac{5}{11} \times 250 \]
\[= 2100 + 66 \times \frac{6}{11} \times 200 + 66 \times \frac{5}{11} \times 250 \]
\[= 2100 + 7200 + 7500 \]
\[= 16800 \]

S14. Ans.(b)
Sol.
Number of male who bought ticket from C1, C2 and C3 together
\[= (80 - 15) \times \frac{6}{13} + (80 - 10) \times \frac{3}{7} + (80 - 20) \times \frac{2}{5} \]
\[= 30 + 30 + 24 \]
\[= 84 \]
Required average = \[\frac{84}{3} = 28 \]
S15. Ans.(a)
Sol.
Number of males who bought ticket from C4, C5 and C6 together
= \((80 - 14) \times \frac{6}{11} + (80 - 8) \times \frac{5}{9} + (80 - 12) \times \frac{9}{17}\)
= 36 + 40 + 36
= 112
Number of females who bought ticket from C4, C5 and C6 together
= \((80 - 14) \times \frac{5}{11} + (80 - 8) \times \frac{4}{9} + (80 - 12) \times \frac{8}{17}\)
= 30 + 32 + 32
= 94
Required difference = 112 - 94 = 18

S16. Ans.(b)
Sol.
(i) \(2x^2 - 5x + 3 = 0\)
\(2x^2 - 2x - 3x + 3 = 0\)
\(2x (x - 1) - 3(x - 1) = 0\)
\((x - 1)(2x - 3) = 0\)
x = \(1, \frac{3}{2}\)

(ii) \(3y^2 - 4y + 1 = 0\)
\(3y^2 - 3y - y + 1 = 0\)
\(3y(y - 1) -1 (y - 1) = 0\)
\((3y - 1) (y - 1) = 0\)
y = \(\frac{1}{3}, 1\)

S17. Ans.(c)
Sol.
(i) \(x^2 - 17x + 72 = 0\)
\(x^2 - 9x - 8x + 72 = 0\)
\(x(x - 9) - 8 (x - 9) = 0\)
\((x - 8) (x - 9) = 0\)
x = 8, 9

(ii) \(y^2 - 27y + 180 = 0\)
\(y^2 - 12y - 15y + 180 = 0\)
\(y(y - 12) - 15 (y - 12) = 0\)
\((y - 15) (y - 12) = 0\)
y = 15, 12
y > x
S18. Ans.(b)
Sol.
(i) \((x - 12)^2 = 0\)
\[x - 12 = 0 \]
\[x = 12 \]
(ii) \(y^2 - 21y + 108 = 0\)
\[y^2 - 12y - 9y + 108 = 0 \]
\[y (y - 12) - 9 (y - 12) = 0 \]
\[(y - 9) (y - 12) = 0 \]
\[y = 9, 12 \]
\[x \geq y \]

S19. Ans.(e)
Sol.
(i) \(2x^2 + 7x + 5 = 0\)
\[2x^2 + 2x + 5x + 5 = 0 \]
\[2x (x + 1) + 5 (x + 1) = 0 \]
\[(2x + 5) (x + 1) = 0 \]
\[x = -\frac{5}{2}, -1 \]
(ii) \(3y^2 + 12y + 9 = 0\)
\[3y^2 + 9y + 3y + 9 = 0 \]
\[3y (y + 3) +3 (y + 3) = 0 \]
\[(3y + 3) (y + 3) = 0 \]
\[y = -1, -3 \]
No relation can be established.

S20. Ans.(b)
Sol.
(i) \(x^2 + 2x - 35 = 0\)
\[x^2 + 7x - 5x - 35 = 0 \]
\[x (x + 7) - 5 (x + 7) = 0 \]
\[(x - 5) (x + 7) = 0 \]
\[x = 5, -7 \]
(ii) \(y^2 + 15y + 56 = 0\)
\[y^2 + 7y + 8y + 56 = 0 \]
\[y (y + 7) + 8 (y + 7) = 0 \]
\[(y + 8) (y + 7) = 0 \]
\[y = -8, -7 \]
\[x \geq y \]
S21. Ans.(b)
Sol.
Speed of Train ‘A’ on Tuesday
\[\frac{450}{2} = 225 \text{ km/hr} \]
Speed of train ‘B’ on Monday
\[\frac{450}{3} = 150 \text{ km/hr} \]
Required% = \[\frac{225 - 150}{150} \times 100 \]
\[= \frac{75}{150} \times 100 \]
\[= 50\% \]

S22. Ans.(d)
Sol.
Speed of train ‘B’ on Tuesday
\[\frac{450}{4.5} = 100 \text{ km/hr} \]
Speed of train ‘A’ on Wednesday
\[\frac{450}{3} = 150 \text{ km/hr} \]
Average speed = \[\frac{2 \times 100 \times 150}{100 + 150} \]
\[= 120 \text{ km/hr} \]

S23. Ans.(a)
Sol.
Speed of train ‘A’ on Friday
\[\frac{450}{4} \times \frac{160}{100} = 180 \]
Speed of train ‘B’ on Friday
\[\frac{450}{5} \times \frac{125}{100} = 112.5 \]
Required sum of time
\[\frac{450}{180} + \frac{450}{112.5} \]
\[= 2.5 + 4 \]
\[= 6.5 \text{ hr} \]
S24. Ans.(c)
Sol.
Speed of train ‘A’ on Tuesday
\[
\frac{450}{2} = 225 \text{ km/hr}
\]
Speed of train ‘B’ on Wednesday
\[
\frac{450}{1.5} = 300 \text{ km/hr}
\]
Required difference = 300 – 225 = 75 km/hr

S25. Ans.(d)
Sol.
Required time = \[
\frac{450}{\frac{450}{2} \times 1.6} = \frac{450}{360} = 1.25 \text{ hr}
\]

S26. Ans.(a)
Sol.
From only (A) we can say whether Z is a positive integer or not
Explanation: - If we look at Statement A, the condition of Z being a positive integer is being satisfied as putting a negative value will give \(Z^7 < Z\). Whereas, in the Statement B, putting both negative as well as positive values of Z will satisfy "\(Z^8 > Z\)". So, we conjecture that option ‘a’ is the correct option.

S27. Ans.(c)
Sol.
From (A) and (B) together value of \(4^\frac{1}{a} + 4^\frac{1}{b}\) can be find out.
Explanation: -
From (A) \(\frac{1}{a} + \frac{1}{b} = \frac{6}{5}\)
From (B) \(ab = 5\)
So, value of \(4^\frac{1}{a} + 4^\frac{1}{b}\) can be find out.

S28. Ans.(e)
Sol. We can’t find the answer as we don’t know the capacity of men. In statement ‘A’ and ‘B’, we are given about the capacity of women and children not about men.

S29. Ans.(e)
Sol. We can’t find the chance of getting a red ball because we don’t know the number of red balls.
S30. Ans.(c)
Sol. When taking both statements together $3w = \text{odd number}$ and $2w = \text{Even number}$
A and B is possible only when w is an integer
So, both the statements required to answer the question.

Solutions (31-35)
Total number of girls in St. Xavier college and Vijaya college = $210 \times 2 = 420$
Let, Number of boys in St. Xavier college = x
And, Number of boys in Vijaya college = y
ATQ,
$x + y = 810 \ldots (i)$
$\frac{2}{3}x + \frac{2}{5}y = 420 \ldots (ii)$
On solving (i) & (ii)
$x = 360, y = 450$
Number of girls in St. Xavier college
$\frac{2}{3} \times 360$
$= 240$
Number of girls in Vijaya college
$\frac{2}{5} \times 450$
$= 180$

<table>
<thead>
<tr>
<th></th>
<th>St. Xavier</th>
<th>Vijaya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boys</td>
<td>360</td>
<td>450</td>
</tr>
<tr>
<td>Girls</td>
<td>240</td>
<td>180</td>
</tr>
</tbody>
</table>

S31. Ans.(c)
Sol.
Required\% = \frac{180}{240} \times 100
= 75%

S32. Ans.(d)
Sol.
Girls in ‘X’ college = $2 \times 320 - 240 = 400$
Total no. of students in ‘X’ colleges
$\frac{125}{100} \times [360 + 240]$
$= 750$
Number of boys in ‘X’ college = $750 - 400 = 350$
S33. Ans.(d)
Sol.
Required difference
= 450 + 180 – 360 – 240
= 630 – 600
= 30

S34. Ans.(b)
Sol.
Number of boys in ‘Y’ college
= \frac{450}{9} \times 13 = 650
Number of girls in ‘Y’ college
= \frac{80}{100} \times 180
= 144
Total number of students in ‘Y’ college
= 650 + 144
= 794

S35. Ans.(e)
Sol.
Required\% = \frac{450 - 360}{360} \times 100
= 25%
S36. Ans.(c)
Sol.
15 men can complete the work in ‘X’ days
1 men can complete the work in ‘15X’ days ...(i)
21 women can complete the work in (X – 4) days
1 women can complete the work in 21(X – 4) days ...(ii)
And also,
35 men can complete the work in ‘Y’ days
1 men can complete the work in ‘35Y’ days ...(iii)
63 women can complete the work in ‘Y – 4’ days
1 women can complete the work in 63 (Y – 4) days ...(iv)
Equate (i) & (iii) and (ii) & (iv)
15X = 35Y \Rightarrow \frac{X}{Y} = \frac{7}{3} \Rightarrow Y = \frac{3}{7}X(v)
21(X – 4) = 63 (Y – 4) \Rightarrow X – 4 = 3Y – 12
\Rightarrow 3Y – X = 8 ...(vi)
Using (v) and (vi)
3 \left(\frac{3}{7}X\right) - X = 8
9X - 7X
7
\Rightarrow X = \frac{8 \times 7}{2} = 28

S37. Ans.(b)
Sol.
Let C.P. of A = 2x
C.P. of B = x
Total cost price = 3x
Mark up price = 3x \times \frac{12}{10} = 3.6x
ATQ,
3.6x – 9 = 3x \times 1.17
\Rightarrow 3.6x – 3.51x = 9
\Rightarrow 0.09x = 9
\Rightarrow x = 100
C.P. of article A = 200
S38. Ans.(d)
Sol.
There are two cases
1st case:
1 boy and 4 girls
probability = \(\frac{5 \binom{1}{1} \times 4 \binom{4}{4}}{9 \binom{5}{5}} = \frac{5}{126} \) ... (i)
2nd case:
2 boys & 3 girls
Probability = \(\frac{5 \binom{2}{2} \times 4 \binom{3}{3}}{9 \binom{5}{5}} = \frac{40}{126} \) ... (ii)
Adding equation (i) and (ii)
Required probability = \(\frac{5}{126} + \frac{40}{126} = \frac{45}{126} = \frac{5}{14} \)

S39. Ans.(b)
Sol.
Let, length of train = x m
And, length of platform = y m
ATQ,
\(25 \times \frac{5}{18} = \frac{x + y}{18} \)
\(\Rightarrow x + y = 125 \) ... (i)
And,
\((25 + 5) \times \frac{5}{18} = \frac{x}{12} \)
\(\Rightarrow x = 100 \) ... (ii)
On solving (i) & (ii)
y = 25
Required difference = 100 – 25 = 75
S40. Ans.(d)
Sol.
Satish : Bhavya : Abhishek
15×12 : 18×(12−x) : 24(12−x)
10 : 9 : 12
⇒ \frac{15 \times 12}{18 \times (12 - x)} = \frac{10}{9}
⇒ 12 − x = 9
⇒ x = 3 month

S41. Ans.(b)
Sol.
Let present age of Sakshi = x
ATQ,
x = \frac{5}{4}(x - 6)
⇒ 4x = 5x - 30
⇒ x = 30
Present age of her son = \frac{30}{5} = 6 years
Required ratio = \frac{30 + 10}{6 + 10} = \frac{40}{16} = \frac{5}{2}

S42. Ans.(d)
Sol.
Interest earn from scheme ‘A’ = \frac{18000 \times 15 \times 2}{100} = 5400
Interest earn from Scheme ‘B’ = 15000 \left[\left(1 + \frac{18}{100} \right)^2 - 1 \right]
= 15000 \left[\frac{3924}{10000} \right]
= 5886
Required difference = 5886 − 5400
= 486
S43. Ans.(e)
Sol.
1st Alloy ratio Copper : Aluminium
2 : 3

2nd Alloy ratio Copper : Zinc
2 : 7

In final alloy ratio is 5 : 3
Let quantity → 5x and 3x
Quantity of copper in final alloy
\[\frac{2}{5} \times 5x + \frac{2}{9} \times 3x = \frac{8x}{3} \]

Quantity of Aluminium
\[\frac{3}{5} \times 5x = 3x \]

Required percentage
\[\frac{3x - \frac{8x}{3}}{\frac{8x}{3}} \times 100 = 12.5\% \]

S44. Ans.(c)
Sol.
Time to collide \[= \frac{20}{10 + 5} = \frac{4}{3} \text{ hr} \]

1 minute before collision, distance
\[= 20 - \left(\frac{79}{60} \times 5 + \frac{79}{60} \times 10 \right) \]
\[= 20 - \frac{237}{12} \]
\[= \frac{1}{4} \text{ km} \]

Alternate method
Relative speed of boats= 5+10 = 15 km/hr
In m/sec
\[15 \times \frac{5}{18} = \frac{25}{6} \text{ m/sec} \]
Distance covered in one minute
\[= \frac{25}{6} \times 60 = 250 \text{ m} = \frac{1}{4} \text{ km} \]
S45. Ans.(a)
Sol.
\[\pi r^2 h = 616 \]
\[\frac{2\pi rh}{352} \]
\[r = 3.5 \text{ m} \]
\[\pi r^2 h = 616 \]
\[h = \frac{616}{11 \times 3.5} = 16 \text{ m} \]
Total S.A. = \[2\pi rh + 2\pi r^2 \]
\[= 2\pi r(h + r) \]
\[= 2 \times \frac{22}{7} \times 3.5(3.5 + 16) \]
\[= 429 \text{ m}^2 \]

S46. Ans.(b)
Sol.
\[\text{Zinc} \]
\[\frac{1}{3} \quad \frac{2}{5} \]
\[\frac{5}{13} \quad \frac{1}{3} \]
\[\frac{1}{65} \quad \frac{2}{39} \]
Required ratio = \[\frac{1}{65} : \frac{2}{39} = \frac{3}{10} \]

S47. Ans.(c)
Sol.
Let efficiency of men of first group is \(M_1 \) and second group is \(M_2 \)
\[3M_1 \times 2 = 4M_2 \times 3 \]
\[M_1 = 2M_2 \]
work = \[40M_1 \times 8 \times 15 \]
According to question
\[40M_1 \times 8 \times 15 \times 2 = 60M_2 \times 4 \times d \]
\[d = 80 \text{ days} \]
S48. Ans.(a)
Sol.
Let speed of boat in still water and speed of stream is \(x\) km/hr and \(y\) km/hr respectively.

ATQ,
\[
\frac{75}{x + y} = \frac{60}{x - y}
\]
\[
75x - 75y = 60x + 60y
\]
\[
15x = 135y
\]
\[
x = 9y
\]
Required percentage = \[
\frac{10y}{9y} \times 100
\]
= \(111\frac{1}{9}\%\)

S49. Ans.(a)
Sol. Let length of train and platform be ‘\(L\)’ and ‘\(P\)’ respectively

1\(^{st}\) train cross the pole = 24 s

2\(^{nd}\) train (20% faster than first train) Cross the pole = \(\frac{24}{5} \times 5 = 20\) s (same length)

Time taken to cross platform = 30 s

ATQ,
\[
\frac{L + P}{30} = \frac{L}{20}
\]
\[
2P = L
\]
\[
L = 2
\]
\[
P = 1
\]

S50. Ans.(d)
Sol.
In 30 min the part of the tank will be filled by both tap = \(\frac{30}{36} = \frac{5}{6}\)

Required tap = \(1 - \frac{5}{6} = \frac{1}{6}\)

\(\frac{1}{6}\) part of the tank will be filled by tank A in 10 min.

\(\therefore\) tap A will take 60 min.

\(\therefore\) tap B will take time to fill the tank

\[
= \frac{1}{36} - \frac{1}{60}
\]
\[
= \frac{1}{90}
\]

\(\therefore\) Required time = 90 min.
VIDEO COURSE

Compliment your classroom with Banking Video Courses
visit: videocourses.adda247.com

Study on the GO with the Adda247 App
GET IT ON Google Play

Boost your prep with Topic-wise E-books and monthly Magazines
visit: store.adda247.com

Fulfill your Dream of Government Job visit: careerpower.in