TIME AND WORK (Solutions)

S1. Ans.(a)
Sol. Let, A's efficiency $=20$
\Rightarrow B's efficiency $=20 \times \frac{75}{100}=15$
and C's efficiency $=20 \times \frac{3}{5}=12$
A : B : C
EfficiencyRatio $=20: 15: 12$
$\begin{aligned} & \text { Ratio of time taken } \\ & \text { alone to complte }\end{aligned}=\frac{1}{20} \quad: \quad \frac{1}{15} \quad: \quad \frac{1}{12}, ~$ the work

B and C complete the work alone in
$=\frac{24 \times 30}{24+30}$ days
$=\frac{40}{3}$ days $=13 \frac{1}{3}$ days

S2. Ans.(b)

Sol. Let time taken by Rohit and Sumit together to complete the work be 10x days.
So Rohit will take 16x days to complete the work alone.
Let total work $=80 \mathrm{x}$ units (L C M)
So, efficiency of Rohit is 5 and efficiency of Rohit and Sumit together is 8.
Time taken by Sumit alone to finish the work $=\frac{80 \mathrm{x}}{8-5}$
$160=\frac{80 \mathrm{x}}{3}$
$\mathrm{x}=6$
\therefore Required days $=16 \mathrm{x}=96$ days

S3. Ans.(e)
Sol. Days total work efficiency

So, efficiency of $\mathrm{C}=12-7=5$ units per day
\therefore Share of C $=1080 \times \frac{5}{12}=$ Rs 450

TEST SERIES

S4. Ans.(b)

Sol. Ratio of efficiency of Ayush and Rahul $=100: 125=4: 5$
\therefore Ratio of time taken by Ayush and Rahul $=5: 4$
\because Ayush do the work in 40 days.
\therefore Rahul do the work in 32 days.

\therefore work completed by Ayush in 15 days $=15 \times 4=60$ unit.
Remaining work $=160-60=100$ unit
\therefore Remaining work completed by Rahul in
$=\frac{100}{5}=20$ days.

S5. Ans.(b)

Sol. Let 4 men work $=3$ women work $=5$ boys work $=60$ unit $($ LCM of 4,3 and 5$)$
Efficiency of a man $=\frac{60}{4}=15$ unit/day
Efficiency of a woman $=\frac{60}{3}=20$ unit/day
Required time $=\frac{60}{15+20}=\frac{60}{35}$
$=1 \frac{5}{7}$ days

S6. Ans.(d)

Sol. Let, Abhishek can complete the work alone in ' x ' days.
Then, Satish can complete the work alone in $\mathrm{x} \times \frac{100}{75}$
$=\frac{4 \mathrm{x}}{3}$ days
Bhavya can complete the work alone in $\frac{4 \mathrm{x}}{3} \times \frac{1}{2}$ days $=\frac{2 \mathrm{x}}{3}$ days
ATQ,
$\frac{3}{4 \mathrm{x}}+\frac{3}{2 \mathrm{x}}=\frac{3}{20}$
$\Rightarrow \frac{1+2}{4 \mathrm{x}}=\frac{1}{20}$
$\Rightarrow \mathrm{x}=15$
Bhavya and Abhishek can complete the work alone in
$\frac{15 \times 10}{15+10}=\frac{150}{25}=6$ days.

S7. Ans.(c)

Sol. 60% work completed in $=\frac{3}{5} \mathrm{x}$ days
100% work completed in $=\frac{3}{5} \times \frac{100}{60}=x$ days
ATQ
$\frac{(x+28)(x+7)}{x+28+x+7}=x$
On solving
$X=14$

S8. Ans.(d)

Sol. Priya's one day work $=\frac{1}{2 \times 10}=\frac{1}{20}$
Pooja's one day work $=\frac{1}{3 \times 10}=\frac{1}{30}$
2 day work of Priya and Pooja
$=\frac{1}{20}+\frac{1}{30}=\frac{3+2}{60}=\frac{5}{60}$
$=12$ days.
So, Pooja and Priya will take 24 days if they work alternatively.

S9. Ans.(a)

Sol. Total work $=90$ units (LCM of days taken by Mohit , Hemant \& B)
Efficieny of Mohit $=\frac{90}{30}=3$ units/day
Efficiency of Hemant $=\frac{90}{18}=5$ units/day
Efficiency of $($ Mohit + Hemant $+B)=\frac{90}{9}=10$ units/day
Efficiency of person $B=10-3-5$
$=2$ units/day.
Required time $=\frac{90}{(2+3)}$
$=18$ days.

S10. Ans.(b)

Sol. $21 \mathrm{M} \times 15=35 \mathrm{~W} \times 11$
9M=11W
ATQ,
$18 \mathrm{M} \times(\mathrm{Y}-4)=20 \mathrm{~W} \times \mathrm{Y}$
$18 \times \frac{11}{9} \mathrm{~W} \times(\mathrm{Y}-4)=20 \mathrm{~W} \times \mathrm{Y}$
$22 \mathrm{Y}-88=20 \mathrm{Y}$
$2 Y=88$
$\mathrm{Y}=44$.

S11. Ans.(e)

Sol. Let A takes $=\mathrm{x}$ days
B takes $=3 x$ days
$(A+B)$ together $=\frac{x \times 3 x}{x+3 x}$ days
C takes $=\frac{3 \mathrm{x}}{4}$ days
$(A+B+C)$ takes together $=12$ days
$\frac{\mathrm{x} \times 3 \mathrm{x} \times \frac{3 \mathrm{x}}{4}}{\mathrm{x} \times 3 \mathrm{x}+3 \mathrm{x} \times \frac{3 \mathrm{~K}}{4}+\mathrm{x} \times \frac{3 \mathrm{x}}{4}}=12$
$\frac{\frac{9 x^{3}}{4}}{\frac{12 x^{2}+9 x^{2}+3 x^{2}}{4}}=12$
$x=\frac{24 \times 12}{9}=32$ days
A takes $=32$ days
B takes $=32 \times 3=96$ days
C takes $=\frac{3 \times 32}{4}=24$ days

S12. Ans.(c)

Sol. Let efficiency of A and B is a and b respectively
Then
$\frac{\mathrm{a} \times 20}{\mathrm{~b} \times 15}=\frac{5}{4}$
$\frac{\mathrm{a}}{\mathrm{b}}=\frac{5}{4} \times \frac{15}{20}=\frac{15}{16}$

S13. Ans.(c)

Sol. Let efficiency of a man = 2a unit/day
So a women = a unit/day
Now,
$18(18 \times 2 \mathrm{a}+12 \mathrm{a})=$ Total work
Time taken by $8 \mathrm{man}=\frac{18(36 a+12 \mathrm{a})}{8 \times 2 \mathrm{a}}=54$ days

S14. Ans.(d)

Sol. Let total ' x ' days required to complete the work
Given, Veer work for 12 days, Shivam work for ($x-\frac{114}{5}$) days, while Anurag work for x days
ATQ -
$\frac{12}{80}+\frac{(5 x-114)}{500}+\frac{x}{120}=1$
$\frac{900+60 \mathrm{x}-1368+50 \mathrm{x}}{6000}=1$
$110 \mathrm{x}=6468$
$x=58 \frac{4}{5}$ days
So, Anurag work for $58 \frac{4}{5}$ days to complete the work.

TEST SERIES
 Bilingual

SBI PO 2020 PRE + MAINS

Complete Topic-Wise

Test Series

2500+ Ouestions

S15. Ans.(a)
Sol. Task A

ATQ,
Task B
One day work of Manish and Suresh $=5+4=9$ units
Total work $=9 \mathrm{x}$
Manish alone can do task B in $(x+16)$ days
So total work $=9 x=5(x+16)$
$\mathrm{x}=20$ days
Total work $=9 \times 20=180$ unit
Suresh alone can do the work $=\frac{180}{4}=45$ days

S16. Ans.(c)

Sol. daily wage of a woman $=\frac{1250}{10 \times 5}=25$ Rs
Daily wage of a man $=$ Rs 50
Daily wage of all men $=\frac{1600}{8}=200$ Rs
Total no. of $\operatorname{man}=\frac{200}{50}=4$

S17. Ans.(b)

Sol. $12 M+13 B=\frac{4893.75}{3}$

$$
\begin{equation*}
12 \mathrm{M}+13 \mathrm{~B}=1631.25 \tag{i}
\end{equation*}
$$

$5 M+6 B=\frac{3562.5}{5}$
$5 \mathrm{M}+6 \mathrm{~B}=712.5 \ldots$ (ii)
$60 \mathrm{M}+65 \mathrm{~B}=8156.25$
$60 M+72 B=8550.0$
$7 B=393.75$
$B=56.25$
$5 \mathrm{M}=712.5-337.50$
$\mathrm{M}=75$
One day wage of 3 M and $4 \mathrm{~B}=3 \times 75+4 \times 56.25=450$
Rs. 3150 can be earned in $=\frac{3150}{450}=7$ days

S18. Ans.(c)

Sol. Ratio of work done by 20 men, 30 women and 36 children
$=20 \times 3: 30 \times 2: 1 \times 36$
$=5: 5: 3$

Wage of 20 men $=\frac{5}{13} \times 780=300$
Wage of $1 \mathrm{man}=\frac{300}{20}=15$
Similarly, wage of 1 woman $=10$
And wage of 1 child $=5$
Total wages of 15 men, 21 women and 30 children for 2 weeks
$=2 \times(15 \times 15+21 \times 10+30 \times 5)=2(225+210+150)=2 \times 585=1170$ Rs.

S19. Ans.(a)

Sol.
(15 days) $\sum_{i-2}^{+3} 30$ unit $=$ Rs 450
$5(A+B) \rightarrow 5 \times 5=25$ unit
$C \rightarrow 30-25=5$ unit
A $\xrightarrow{\text { work }} 3 \times 5=15$ unit $=15 \times 15=$ Rs. 225
B $\xrightarrow{\text { work }} 2 \times 5=10$ unit $=15 \times 10=$ Rs. 150
C $\xrightarrow{\text { work }} 5$ unit $=5 \times 15=$ Rs. 75

S20. Ans.(c)

Sol. We know work efficiency ratio of A to $B=5: 4$
Let time taken by A alone to complete the work $=4 \mathrm{x}$
And by B to complete the work alone $=5 \mathrm{x}$
Atq,
$5 x-4 x=6$
$\Rightarrow x=6$
So, A alone can complete the work in 24 day
And, B alone can complete the work in 30 day
A and B working together can complete the work in
$=\frac{1}{\frac{1}{30}+\frac{1}{24}}=\frac{120}{9}=13 \frac{1}{3}$ days

S21. Ans.(b)

Sol. Let efficiency of B be ' 10 x units /day'
So, efficiency of $C=10 x \times \frac{60}{100}=6 x$ units/day
Now,
Total work $=22.5(10 \mathrm{x}+6 \mathrm{x})$
$=360 \mathrm{x}$ units
Now, work completed by A and B together in 1 day $=\frac{360 x}{24}=15 x$ units
So, efficiency of $A=15 x-10 x=5 x$ units/day

Now,
Work completed by A, B, C and D together in 1 day $=\frac{360 x}{10}=36 x$ units
So, efficiency of $D=36 x-(10 x+6 x+5 x)=15 x$ units/day
Hence, required days $=\frac{360 x}{(5 x+6 x+15 x)}=\frac{180}{13}$ days $=13 \frac{11}{13}$ days
S22. Ans.(a)
Sol. let efficiency of Hemant, Manoj and Vikash are A, B and C respectively.
ATQ
$\frac{(\mathrm{A}+\mathrm{B}) 32}{3}=\frac{(\mathrm{B}+\mathrm{C}) 96}{7}$
$7 A+7 B=9 B+9 C$
$7 A-9 C=2 B$
And
$2 \mathrm{~A}+3 \mathrm{C}=8 \mathrm{~B}$
Appling (I) $+3 \times$ (II)
$13 \mathrm{~A}=26 \mathrm{~B}$
$\frac{\mathrm{A}}{\mathrm{B}}=\frac{2}{1}$
Let A and B are $2 x$ and x
Then $\mathrm{C}=\frac{4 \mathrm{x}}{3}$
Total work $=\frac{32}{3} \times(3 \mathrm{x})=32 \mathrm{x}$ unit
Required time $=\frac{32 x}{x+2 x+\frac{4 x}{3}}$
$=\frac{32 \mathrm{x} \times 3}{13 \mathrm{x}}=7 \frac{5}{13}$ days

S23. Ans.(c)

Sol. Time taken by Pipe B to fill the tank $\frac{60}{1.5}=40$ hours
Time taken by C to complete the work $=30$ hours
Let the total capacity of the tank be 120 units (LCM)
So, the efficiency of A, B and C are 2 units/hr, 3 units/hr and 4 units/hr respectively.
ATQ
$(2+4) \times X+3 \times(X+13)=120$
$X=9$

S24. Ans.(a)

Sol. Let efficiency of A be ' 4 x units /day'
So efficiency of $B=4 x \times \frac{150}{100}=6 x$ units/day
And efficiency of $C=4 x \times \frac{75}{100}=3 x$ units/day
ATQ,
Total work $=(6 x+3 x) \times 24=216 x$ units
Now,
A's increased efficiency $=4 \mathrm{x} \times \frac{150}{100}=6 \mathrm{x}$ units/day
B's increased efficiency $=6 x \times \frac{150}{100}=9 x$ units/days
So, required days $=\frac{216 x}{(6 x+9 x+3 x)}=\frac{216 x}{18 x}=12$ days

12 Months Subscription

A

S25. Ans.(d)

Sol. Let efficiency of Veer and Shivam be ' $5 x$ units/day' and ' $6 x$ units/day' respectively. ATQ,
Total work $=25 \times 6 \mathrm{x}=150 \mathrm{x}$ units
Now,
Work done by Veer in 18 days $=5 \mathrm{x} \times 18=90 \mathrm{x}$ units
Remaining work $=150 \mathrm{x}-90 \mathrm{x}=60 \mathrm{x}$ units
So, required days $=\frac{60 \mathrm{x}}{6 \mathrm{x}}=10$ days

S26. Ans.(d)

Sol. (T+4) type 'A' types of pipes can fill a tank in 2T hours
So, 1 type 'A' pipe can fill the tank in $2 \mathrm{~T}(\mathrm{~T}+4)$ hours
Same, $(T+12)$ type ' B ' types of pipes can fill the tank in $(T+8)$ hours
So, $1 \mathrm{~B}^{\prime}$ types of pipes can fill the tank in $(\mathrm{T}+8)(\mathrm{T}+12)$ hours
Also given, ratio of efficiency of type ' A ' to type ' B ' pipe is $5: 4$
So, ratio of time taken by type 'A' to type 'B' pipe be $4: 5$
ATQ -
$\frac{4}{5}=\frac{2 \mathrm{~T}(\mathrm{~T}+4)}{(\mathrm{T}+8)(\mathrm{T}+12)}$
$2\left(\mathrm{~T}^{2}+20 \mathrm{~T}+96\right)=5 \mathrm{~T}(\mathrm{~T}+4)$
$2 \mathrm{~T}^{2}+40 \mathrm{~T}+192=5 \mathrm{~T}^{2}+20 \mathrm{~T}$
$3 \mathrm{~T}^{2}-20 \mathrm{~T}-192=0$
$\mathrm{T}=12,-\frac{16}{3}$
12 type ' A ' pipes can fill the tank in $=\frac{16 \times 24}{12}=32$ hours
And, 15 type ' B ' pipes can fill the tank in $=\frac{24 \times 20}{15}=32$ hours
Required time $=\frac{32 \times 32}{32+32}=16$ hours

S27. Ans.(a)

Sol. Veer can complete the whole task alone $=16 \times 4=64$ days
Sameer can complete the same task alone $=16 \times 3=48$ days
Total work $=192$ units(LCM of 64 and 48)
Efficiency of Satish $=\frac{192}{16}-\frac{192}{48}=8$ units/day
If all three work alternatively
First day by Satish $=8$ units
Second day by Sameer $=4$ units
Third day by Veer $=3$ units
Total work in three days $=8+4+3=15$ units
In total 36 days $=\frac{36}{3} \times 15=180$ units
Satish on 37 days $=8$ units
Remaining work after 37 days $=192-180-8=4$ units
On 38 days remaining work by Sameer $=\frac{4}{4}=1$ days
Total time $=38$ days

S28. Ans.(b)

Sol. Let efficiency of B $=100$
So, efficiency of $A=120$
And efficiency of $C=100 \times \frac{80}{100}=80$
Efficiency of $D=\frac{100+120+80}{2}=150$
Ratio of efficiency of A, B, C and $D=6: 5: 4: 7.5$
Let one day work of A , B , C \& D be 6x units, 5 x units, 4 x units $\& 7.5 \mathrm{x}$ units respectively ATQ -
Total work $=7.5 \mathrm{x} \times 8+(5 \mathrm{x}+6 \mathrm{x}+4 \mathrm{x}) \times 12$
$=240 \mathrm{x}$ units
When B \& D work alternatively
First day by $\mathrm{D}=7.5 \mathrm{x}$ units
Second day be $B=5 x$ units
Two day work of $=7.5 \mathrm{x}+5 \mathrm{x}=12.5 \mathrm{x}$ units
In 38 days total work $=\frac{38}{2} \times 12.5 x=237.5 \mathrm{x}$ units
Remaining work $=240 \mathrm{x}-237.5 \mathrm{x}=2.5 \mathrm{x}$
Remaining work by D on 39 days $=\frac{2.5 \mathrm{x}}{7.5 \mathrm{x}}=\frac{1}{3}$ days
Total time $=38 \frac{1}{3}$ days

S29. Ans.(e)

Sol. Time taken by Pipe A to fill tank $1=7.5 \mathrm{~min}$.
Time taken by pipe B to fill $\operatorname{tank} 1=\frac{25}{2} \mathrm{~min}=12.5 \mathrm{~min}$
Let the total volume of tank 1 is 75 x
The efficiency of pipe $A=\frac{75 \mathrm{x}}{7.5}=10 \mathrm{x} / \mathrm{min}$
Efficiency of pipe $B=\frac{75 x}{12.5}=6 x / \mathrm{min}$.
When pipe A is opened for 12 minutes, Amount of water $=10 \mathrm{x} \times 12=120 \mathrm{x}$
Similarly
Amount of water by pipe $B=6 x \times 12=72 x$.
ATQ,
$\frac{\text { Volume (Tank2) }}{\text { Volume (Tank1) }}=\frac{4}{1}$
Volume $($ Tank 2$)=4 \times 75 x=300 x$
Amount of water filled by pipe $C=300 x-192 x=108 x$.
Time take by C was 18 minutes
Efficiency of $C=\frac{108 \mathrm{x}}{18}=6 \mathrm{x} / \mathrm{min}$
Time taken by pipe C to fill 80% of tank $1=\frac{80}{100} \times \frac{75 \mathrm{x}}{6 \mathrm{x}}=10$ minutes.

Sol.

Days	Total work	efficiency
A - $18 \longrightarrow 4$ unit/daily		
B-24 $\longrightarrow 72$ 3 unit/daily		
$\mathrm{C}-36 \longrightarrow(-2)$ unit/daily		
ATQ-		
$(A+B) x+(A+B-C)\left(\frac{5 x+24}{5}\right)=72$		
$7 \mathrm{x}+5\left(\frac{5 x+24}{5}\right)=72$		
$12 \mathrm{x}=48$		
$\mathrm{x}=4$		
$(A+B+C)$ work for		
$=4+4 \frac{4}{5}$		
$=8 \frac{4}{5}$ days		

adda
 publications

BODKS

Visit: publications.adda247.com \& store.adda247.com
For any information, mail us at publications@adda247.com

