

Solutions

S1. Ans.(b)

Sol. Total runs made by running b/w wicket = $110 - 3 \times 4 - 8 \times 6 = 50$ $\% = \frac{50}{110} \times 100 = \frac{500}{11} = 45 \frac{5}{11} \%$

S2. Ans.(c)

Sol. Marks of $1^{st} \rightarrow x$ Marks of $2^{nd} \rightarrow v$ x = y + a $x = \frac{56}{100} (x + y)$ $y + a = \frac{56}{100} (2y + a)$ $100y + 9 \times 100 = 112y + 9 \times 56$ $12y = 9 \times 44$ y = 33x = 42

S3. Ans.(d)

Sol. number of students of 8 years age = 48 Number of students above 8 years of age = $\frac{2}{3} \times 48 = 32$ Let Number of students below 8 year of age $\rightarrow x$ $x = \frac{20}{100} (48 + 32 + x)$ 100x = 1600 + 20xx = 20Total Students = 48 + 32 + 20 = 100

S4. Ans.(a)

Sol. Valid votes = $\frac{7500 \times 80}{100} = 6000$ Valid votes. That other Candidate got = $6000 \times \frac{45}{100} = 2700$

S5. Ans.(b)

Sol. $x = \frac{120}{100}y$ x: y = 6: 5 $y = 550 \times \frac{5}{11} = 250$

S6. Ans.(a)

1

Sol. The amount Paid = $6650 \times \frac{94}{100} \times \frac{110}{100} = 6876.10$ Rs

S7. Ans.(c) **Sol.** Fruits in good condition = $600 \times \frac{85}{100} + 400 \times \frac{92}{100} = 878$ % of fruit in good condition = $\frac{878}{1000} \times 100 = 87.8$

S8. Ans.(a)

Sol. $\frac{20}{100} \times a = b$ a = 5b $b = \frac{a}{r}$ b% of 20 = $\left(\frac{a}{5}\right)$ % × 20 = 4% of a

S9. Ans.(b) Sol. $\frac{x \times 90 \times 90 \times 90}{1000000} = 8748$ x = 12000 Rs

S10. Ans.(a)

Sol. Passing Marks = 125 + 40 = 165 $33\% \rightarrow 165$ $100\% \rightarrow 500$

S11. Ans.(c)

Sol. A + B + C's 1 hour efficiency = $\frac{1}{6}$ A + B + C's 2 hour work = $\frac{2}{6} = \frac{1}{3}$ Remaining work = $1 - \frac{1}{3} = \frac{2}{3}$ $\frac{2}{3}$ work done by A + B = 7 $1 \text{ work A} + B = \frac{21}{2}$ $A + B + C \Rightarrow \vec{6} \qquad 7 \\ 42$ $\Rightarrow \frac{21}{2}$ A + BEfficiency of C = 7 - 4 = 3C alone will fill the tank in $=\frac{42}{3} = 14$ hours

S12. Ans.(c)

Sol. 10 18 А \Rightarrow В \Rightarrow 15 180 12 $A+B-C \Rightarrow 18$ 10 A + B - C = 1018 + 12 - C = 10-C = 10 - 30C = 20C will empty the cistern in $=\frac{180}{20}=9$ hours

S13. Ans.(a) Sol. $A \Rightarrow$ 20 15 $B \Rightarrow$ 25 300 12 $C \Rightarrow -30$ -10 $A + B + C \Rightarrow 15 + 12 - 10 \Rightarrow 17$ 3 hours work \rightarrow 17 51 hours work \rightarrow 289 Remaining work = 11 Now it's A's turn Time taken by A = $\frac{11}{15}$ Total time = $51\frac{11}{15}$

S14. Ans.(c)

Sol. Efficiency of A = $\frac{1}{20}$ 20% efficiency of A = $\frac{1}{20} \times \frac{20}{100} = \frac{1}{100}$ Efficiency \rightarrow A : 20% Efficiency A = $\frac{1}{20}$: $\frac{1}{100}$ = 5 : 1 Time Ratio $\rightarrow 1:5$ $1r \rightarrow 20$ minutes $5r \rightarrow 100$ minutes 1 pipe takes = 100 minutes 5 pipe will take = $\frac{100}{5}$ = 20 minutes

S15. Ans.(d)

Sol. $A \Rightarrow$ 40 3 $B \Rightarrow 60 120$ 2 4 $C \Rightarrow 30$

3 minutes work = 3 + 3 + 3 + 2 + 4 = 15 24 minutes work = 15 × 8 = 120

S16. Ans.(d)

Sol. 8 3 Α 24 2 B 12 Time = $\frac{24}{5}$ = $4\frac{4}{5}$ hours

With leak in the bottom the cistern will be full in = $6 + 4\frac{4}{5} = 10\frac{4}{5}$

 $\frac{\frac{1}{8} + \frac{1}{12} + \frac{1}{x} = \frac{5}{54}}{\frac{1}{x} = \frac{5}{54} - \frac{1}{8} - \frac{1}{12}}{\frac{1}{x} = \frac{20 - 27 - 18}{216}}$ $\frac{\frac{1}{x} = \frac{-25}{216}}{\frac{1}{x} = \frac{-25}{216}}$ $x = \frac{216}{25}$

S17. Ans.(c) Sol.

A : B Efficiency \rightarrow 6 : 1 Time \rightarrow 1 : 6 $6r \rightarrow 28$ $1r \rightarrow \frac{14}{3}$ Total time $= \frac{1}{28} + \frac{3}{14}$ $= \frac{1+6}{28}$ $= \frac{7}{28} = 4$ minutes

S18. Ans.(d)

Sol. $\frac{1}{10} + \frac{1}{15} + \frac{1}{x} = \frac{1}{18}$ $\frac{1}{x} = \frac{1}{18} - \frac{1}{15} - \frac{1}{10}$ $= \frac{10 - 12 - 18}{180}$ $x = \frac{180}{20} = 9 \text{ minutes}$

S19. Ans.(b)

Sol. A + Q $\frac{1}{6} + \frac{1}{\ln |et|} = \frac{1}{8}$ $\frac{1}{\ln |et|} = \frac{1}{8} - \frac{1}{6}$ $\frac{1}{\ln |et|} = \frac{3 - 4}{24}$ Inlet $\Rightarrow 24$ hours Capacity = 4 × 24 × 60 = 5760

RRB JE PRIME 2019 FIRST STAGE

TOTAL VACANCIES 13,487

55 + TOTAL TESTS

15 Full Length Mocks
20 Section wise Practice Sets
20 Topic wise Tests

BILINGUAL

 $apacity = 4 \times 24 \times 60 = 5760$

www.bankersadda.com www.sscadda.com www.careerpower.in www.adda247.com

55000

S20. Ans.(b)

Sol. Let the filling capacity \Rightarrow x m³ Emptying capacity \Rightarrow x + 10 m³ $\frac{2400}{x+10} - \frac{2400}{x} = 8$ $\frac{x - x + 10}{(x + 10) x} = \frac{1}{300}$ 3000 = x(x + 10)Using option (b) 50 × 60 = 3000 satisfies

S21. Ans.(a)

 $V_1 = 60$ $V_3 = 2 \times V_1 = 2 \times 60 = 120$ Difference = 120 - 60 = 60

Α

S22. Ans.(b) Sol.

When Tom meets Jerry distance travelled by Tom = x + 9 distance travelled by Jerry = x - 9 $\frac{x+9}{T} = \frac{x-9}{J}, \frac{T}{J} = \frac{x+9}{x-9}$ When Jerry meets Bill.

Distance travelled by Jerry= x + 7Distance travelled by Bill = x - 7x+7 x-7 k + 7

 $\frac{x+7}{J} = \frac{x-7}{B}, \frac{J}{B} = \frac{x+7}{x-7}$ 3T = 5B [Given] $\frac{T}{B} = \frac{5}{3}$ $\frac{T}{J} \times \frac{J}{B} = \frac{5}{3}$ $\frac{(x+9)}{(x-9)} \times \left(\frac{x+7}{x-7}\right) = \frac{5}{3}$

RRB NTPC 2019 PRIME PACKAGE

100 + TOTAL TESTS

40 Full Length Mocks

- 30 Section Wise Tests
- 10 Previous Years papers

20 +Topic Wise tests

eBooks

BILINGUAL

6

5(x-9)(x-7) = 3(x+9)(x+7) $5x^2 - 80x + 315 = 3x^2 + 48x + 189$ $2x^2 - 128x + 126 = 0$ $x^2 - 64x + 63 = 0$ x = 63 or 1x = 63

S24. Ans.(c)

Sol. Ratio of distance covered by second train to first train = 125 : 1 = 5 : 4 Time is same So, ratio of speeds = 5:4Speed of second train = $40 \times \frac{5}{4} = 50$ km/hr Distance covered by 1st train in half an hour = 20 km Let 3rd train takes 't' hours to overtake 1st train & speed of 3rd train \rightarrow x km/hr $t = \frac{20}{x-40}$...(ii) Distance covered by 2nd train in half an hour = 25 km $t + \frac{3}{2} = \frac{25}{x - 50} \dots (i)$ From (i) & (ii) x = 60 km/hr

S25. Ans.(b)

Sol. Total distance travelled by both the trains before meeting = D This distance will be covered in proportion of their speeds.

3 hours after meeting distance travelled by

 $A = 3 \times S_A$ $B = 3 \times S_B$ $3S_{A} + 3S_{B} = 675$ $S_A + S_B = 225$

7

Remaining distance to be covered by 1st train = $\frac{DS_B}{S_A + S_B}$

Time taken
$$\Rightarrow \frac{DS_B}{(S_A + S_B)S_A} = 16 \dots (i)$$

Remaining Distance covered by second train = $\frac{DS_A}{(S_A + S_P)}$

Time taken
$$\Rightarrow \frac{DS_A}{(S_A + S_B)S_A} = 25 \dots (ii)$$

Dividing (i) by (ii)
 $\frac{S_A^2}{S_B^2} = \frac{25}{16}$
 $S_A = \frac{5}{4}S_B$, $S_A + \frac{4}{5}S_A = 225$
 $S_A = 125$
 $S_B = 100$
From (i)
Time $= \frac{D}{S_A} = 16 \times \frac{225}{100} = 36$ h

S26. Ans.(b) Sol. y y 0 Speed of Bus \rightarrow b Speed of Man \rightarrow m When the bus goes from P to A, the man goes from C to A Time taken by both are equal $\therefore \frac{y}{b} = \frac{x}{m}$ $\frac{b}{m} = \frac{y}{x} \dots (1)$ When Bus goes from P to B, the man goes from C to B, Again time taken by both are equal. $\frac{y+x+3x}{b} =$ 3x m b $\frac{b}{m} = \frac{y + x + 3x}{3x} \dots (2)$ From (1) & (2) $\frac{y}{x} = \frac{4x + y}{3x}$ 3y = 4x + y2y = 4xy = 2xFrom (1) $\frac{J}{m} = \frac{2x}{m}$ b = 2mS27. Ans.(a) **Sol.** Speed of car A = a Speed of car B = bLet they meet after t minutes. Distance travelled by car A before meeting car $B = a \times t$ Distance travelled by car B before meeting car $A = b \times t$ Distance travelled by car A after meeting car B = 54 aDistance travelled by car B after meeting car A= 24 b Distance travelled by car A after crossing car B = Distance travelled by car B before crossing car A (vice versa) $at = 54 b \dots (1)$ **RRB NTPC STAGE-I** $bt = 24 a \dots (2)$ Multiplying (1) & (2)**25 Previous Year Papers** $abt^2 = 54 \times 24 \times ab$ $t^2 = 54 \times 24$ **Online Test Series** t = 36 minutes Both cars travelled 36 minutes before meeting BILINGUAL Time taken By B = 24 + 36 = 60 minutes.

www.sscadda.com

www.careerpower.in

www.bankersadda.com

S28. Ans.(a) Sol. Train Car $240\ 210 = 8\ h\ 40\ min.$ $180\ 270 = 9\ h$ To travel extra 60 km by car increase in time = 20 min So, travel extra 240 km by car increase in time = 80 min \therefore 450 km by car in = 8 h 40 min + 80 min = 10 h Speed of car = 450/10 = 45 km/h

S29. Ans.(d)

Sol. Let length \rightarrow x meters speed of B \rightarrow y kmph 27 = $\frac{x + 500}{(63 + y)}$ $\frac{27}{3600} = \frac{x + 0.5}{(63 + y)}$...(1) $\frac{162}{3600} = \frac{x + 0.5}{(36 - y)}$...(2) Form (1) & (2) $\frac{27}{3600} \times (63 + y) = \frac{162}{3600} \times (63 - y)$ 63 + y = 6 (63 - y) 63 + y = 378 - 6y 7y = 315 y = 45 km $\frac{27}{3600} = \frac{x + 0.5}{108}$ 0.81 = x + 0.5x = 0.31 km = 310 m

S30. Ans.(b) Sol. $\frac{D}{x-15} - \frac{D}{x} = 45$...(1) $\frac{D}{x} - \frac{D}{x+10} = 20$...(2) Form (1) & (2)

We will get D = 9750 km.

A COMPREHENSIVE GUIDE FOR RRB NTPC STAGE-1 & 2

