Solutions

S1. Ans.(b)

Sol. Total runs made by running b / w wicket $=110-3 \times 4-8 \times 6=50$
$\%=\frac{50}{110} \times 100=\frac{500}{11}=45 \frac{5}{11} \%$

S2. Ans.(c)

Sol. Marks of $1^{\text {st }} \rightarrow x$
Marks of $2^{n d} \rightarrow \mathrm{y}$
$x=y+a$
$x=\frac{56}{100}(x+y)$
$y+a=\frac{56}{100}(2 y+a)$
$100 y+9 \times 100=112 y+9 \times 56$
$12 \mathrm{y}=9 \times 44$
$y=33$
$\mathrm{x}=42$

S3. Ans.(d)

Sol. number of students of 8 years age $=48$
Number of students above 8 years of age $=\frac{2}{3} \times 48=32$
Let Number of students below 8 year of age $\rightarrow x$
$\mathrm{x}=\frac{20}{100}(48+32+\mathrm{x})$
$100 \mathrm{x}=1600+20 \mathrm{x}$
$\mathrm{x}=20$
Total Students $=48+32+20=100$

S4. Ans.(a)

Sol. Valid votes $=\frac{7500 \times 80}{100}=6000$
Valid votes. That other Candidate got $=6000 \times \frac{45}{100}=2700$

S5. Ans.(b)

Sol. $x=\frac{120}{100} y$
$x: y=6: 5$
$y=550 \times \frac{5}{11}=250$

S6. Ans.(a)

Sol. The amount Paid $=6650 \times \frac{94}{100} \times \frac{110}{100}=6876.10 \mathrm{Rs}$

S7. Ans.(c)

Sol. Fruits in good condition $=600 \times \frac{85}{100}+400 \times \frac{92}{100}=878$
$\%$ of fruit in good condition $=\frac{878}{1000} \times 100=87.8$

S8. Ans.(a)

Sol. $\frac{20}{100} \times \mathrm{a}=\mathrm{b}$
$\mathrm{a}=5 \mathrm{~b}$
$\mathrm{b}=\frac{a}{5}$
$\mathrm{b} \%$ of $20=\left(\frac{a}{5}\right) \% \times 20=4 \%$ of a
S9. Ans. (b)
Sol. $\frac{x \times 90 \times 90 \times 90}{1000000}=8748$
$\mathrm{x}=12000$ Rs
S10. Ans.(a)
Sol. Passing Marks $=125+40=165$
$33 \% \rightarrow 165$
$100 \% \rightarrow 500$
S11. Ans.(c)
Sol. A + B + C's 1 hour efficiency $=\frac{1}{6}$
$A+B+C$'s 2 hour work $=\frac{2}{6}=\frac{1}{3}$
Remaining work $=1-\frac{1}{3}=\frac{2}{3}$
$\frac{2}{3}$ work done by $\mathrm{A}+\mathrm{B}=7$
1 work $\mathrm{A}+\mathrm{B}=\frac{21}{2}$
$\mathrm{A}+\mathrm{B}+\mathrm{C} \Rightarrow \quad 6 \quad 7$
42
$A+B \Rightarrow \frac{21}{2} \quad 4$
Efficiency of C $=7-4=3$
C alone will fill the tank in $=\frac{42}{3}=14$ hours

S12. Ans.(c)

Sol.

A	\Rightarrow	10	
B	\Rightarrow	18	180
12			
$\mathrm{~A}+\mathrm{B}-\mathrm{C} \Rightarrow$	18		10
$\mathrm{~A}+\mathrm{B}-\mathrm{C}=10$			
$18+12-\mathrm{C}=10$			
$-\mathrm{C}=10-30$			
$\mathrm{C}=20$			

C will empty the cistern in $=\frac{180}{20}=9$ hours

S13. Ans.(a)

Sol.
$\begin{array}{lccc}\mathrm{A} \Rightarrow & 20 & & 15 \\ \mathrm{~B} \Rightarrow & 25 & 300 & 12 \\ \mathrm{C} \Rightarrow & -30 & & -10\end{array}$
$A+B+C \Rightarrow 15+12-10 \Rightarrow 17$
3 hours work $\rightarrow 17$
51 hours work $\rightarrow 289$
Remaining work $=11$
Now it's A's turn
Time taken by $\mathrm{A}=\frac{11}{15}$
Total time $=51 \frac{11}{15}$

S14. Ans.(c)

Sol. Efficiency of A $=\frac{1}{20}$
20% efficiency of $\mathrm{A}=\frac{1}{20} \times \frac{20}{100}=\frac{1}{100}$
Efficiency \rightarrow A : 20\% Efficiency A $=\frac{1}{20}: \frac{1}{100}=5: 1$
Time Ratio $\rightarrow 1: 5$
$1 \mathrm{r} \rightarrow 20$ minutes
$5 r \rightarrow 100$ minutes
1 pipe takes $=100$ minutes
5 pipe will take $=\frac{100}{5}=20$ minutes
S15. Ans.(d)
Sol.

$$
\begin{array}{lll}
\mathrm{A} \Rightarrow & 40 & 3 \\
\mathrm{~B} \Rightarrow & 60 & 120 \\
\mathrm{C} \Rightarrow & 20 & 4
\end{array}
$$

3 minutes work $=3+3+3+2+4=15$
24 minutes work $=15 \times 8=120$

S16. Ans.(d)

Sol.
A 83
24
B $12 \quad 2$
Time $=\frac{24}{5}=4 \frac{4}{5}$ hours
With leak in the bottom the cistern will be full in $=6+4 \frac{4}{5}=10 \frac{4}{5}$

$\frac{1}{8}+\frac{1}{12}+\frac{1}{x}=\frac{5}{54}$
$\frac{1}{x}=\frac{5}{54}-\frac{1}{8}-\frac{1}{12}$
$\frac{1}{x}=\frac{20-27-18}{216}$
$\frac{1}{x}=\frac{-25}{216}$
$x=\frac{216}{25}$

S17. Ans.(c)

Sol.

$\begin{array}{lcll} & A & : & B \\ \text { Efficiency } & \rightarrow & 6 & : \\ \text { Time } & \rightarrow & 1 & : \\ \text { Tin }\end{array}$
$6 r \rightarrow 28$
$1 r \rightarrow \frac{14}{3}$
Total time
$=\frac{1}{28}+\frac{3}{14}$
$=\frac{1+6}{28}$
$=\frac{7}{28}=4$ minutes

S18. Ans. (d)
Sol.
$\frac{1}{10}+\frac{1}{15}+\frac{1}{x}=\frac{1}{18}$
$\frac{1}{x}=\frac{1}{18}-\frac{1}{15}-\frac{1}{10}$
$=\frac{10-12-18}{180}$
$x=\frac{180}{20}=9$ minutes

S19. Ans.(b)
Sol. A + Q

RRB JE PRIME 2019 FIRST STAGE

$\frac{1}{6}+\frac{1}{\text { Inlet }}=\frac{1}{8}$
$\frac{1}{\text { Inlet }}=\frac{1}{8}-\frac{1}{6}$
$\frac{1}{\text { Inlet }}=\frac{3-4}{24}$
Inlet $\Rightarrow 24$ hours

TOTAL VACANCIES 13,487
55 + TOTAL TESTS
15 Full Length Mocks
20 Section wise Practice Sets
20 Topic wise Tests

Capacity $=4 \times 24 \times 60=5760$
BILINGUAL

S20. Ans.(b)

Sol. Let the filling capacity $\Rightarrow \mathrm{x} \mathrm{m}^{3}$
Emptying capacity $\Rightarrow x+10 \mathrm{~m}^{3}$
$\frac{2400}{x+10}-\frac{2400}{x}=8$
$\frac{x-x+10}{(x+10) x}=\frac{1}{300}$
$3000=\mathrm{x}(\mathrm{x}+10)$
Using option (b)
$50 \times 60=3000$ satisfies

S21. Ans.(a)

Sol.

Let speeds of car be $V_{1}, V_{2} \& V_{3}$
$\frac{A B}{V_{1}}-\frac{A B}{V_{2}}=\frac{A B}{V_{2}}-\frac{A B}{V_{3}} \ldots$ (i)
$\frac{240}{V_{1}}-\frac{240}{V_{2}}=1$
In BC car 1 travels 160 km before meeting Car 3 \& Car 3 travels 320 km before meeting car 1
$\therefore \mathrm{V}_{3}=2 \mathrm{~V}_{1}\left[\frac{320}{\mathrm{~V}_{3}}=\frac{160}{\mathrm{~V}_{1}}\right]$

From equation (i)
$\frac{1}{\mathrm{~V}_{1}}-\frac{1}{\mathrm{~V}_{2}}=\frac{1}{\mathrm{~V}_{2}}-\frac{1}{2 \mathrm{~V}_{1}}$
$\frac{1}{\mathrm{~V}_{1}}+\frac{1}{2 \mathrm{~V}_{1}}=\frac{1}{\mathrm{~V}_{2}}+\frac{1}{\mathrm{~V}_{2}}$
$\frac{3}{2 \mathrm{~V}_{1}}=\frac{2}{\mathrm{~V}_{2}}, \mathrm{~V}_{2}=\frac{4}{3} \mathrm{~V}_{1}$
From (ii)
$\frac{240}{\mathrm{~V}_{1}}-\frac{240}{\frac{4}{3} \mathrm{~V}_{1}}=1, \frac{240}{\mathrm{~V}_{1}}-\frac{180}{\mathrm{~V}_{1}}=1$
$\mathrm{V}_{1}=60$
$V_{3}=2 \times V_{1}=2 \times 60=120$
Difference $=120-60=60$

S22. Ans.(b)

Sol.

18 km travelled with $\frac{4}{5}$ speed -18 km travelled with usual speed $=45-36$
$\frac{18}{\frac{4}{5} s}-\frac{18}{s}=\frac{9}{60}$
$18\left(\frac{5-4}{4 s}\right)=\frac{9}{60}$
$\frac{18 \times 1}{4 \mathrm{~s}}=\frac{9}{60}$
$\mathrm{s}=30 \mathrm{~km} / \mathrm{hr}$
$\mathrm{d}=30 \times \mathrm{T}$
$\mathrm{T}=\mathrm{d} / 30$
$\frac{30}{30}+\frac{(\mathrm{d}-30)}{30 \times \frac{4}{5}}=\mathrm{T}+\frac{45}{60}$
$1+\frac{(\mathrm{d}-30)}{24}=\frac{\mathrm{d}}{30}+\frac{3}{4}$
$\mathrm{d}=120 \mathrm{~km}$

S23. Ans.(d)

Sol. Let the distance be x miles.
When Tom meets Jerry
distance travelled by Tom $=x+9$
distance travelled by Jerry $=x-9$
$\frac{x+9}{T}=\frac{x-9}{J}, \frac{T}{J}=\frac{x+9}{x-9}$
When Jerry meets Bill.
Distance travelled by Jerry $=x+7$
Distance travelled by Bill $=\mathrm{x}-7$
$\frac{x+7}{J}=\frac{x-7}{B}, \frac{J}{B}=\frac{x+7}{x-7}$
$3 \mathrm{~T}=5 \mathrm{~B}$ [Given]
$\frac{T}{B}=\frac{5}{3}$
$\frac{T}{J} \times \frac{J}{B}=\frac{5}{3}$
$\frac{(x+9)}{(x-9)} \times\left(\frac{x+7}{x-7}\right)=\frac{5}{3}$

RRB NTPC 2019 PRIME PACKACE

100 + TOTAL TESTS
$5(x-9)(x-7)=3(x+9)(x+7)$
$5 x^{2}-80 x+315=3 x^{2}+48 x+189$
$2 \mathrm{x}^{2}-128 \mathrm{x}+126=0$
$x^{2}-64 x+63=0$
$x=63$ or 1
$\mathrm{x}=63$

S24. Ans.(c)

Sol. Ratio of distance covered by second train to first train = 125:1=5:4
Time is same
So, ratio of speeds $=5: 4$
Speed of second train $=40 \times \frac{5}{4}=50 \mathrm{~km} / \mathrm{hr}$
Distance covered by 1 st train in half an hour $=20 \mathrm{~km}$
Let 3rd train takes ' t ' hours to overtake 1st train \& speed of 3rd train $\rightarrow \mathrm{xkm} / \mathrm{hr}$
$t=\frac{20}{x-40} \ldots$ (ii)
Distance covered by 2nd train in half an hour $=25 \mathrm{~km}$
$t+\frac{3}{2}=\frac{25}{x-50} \ldots(i)$
From (i) \& (ii)
$\mathrm{x}=60 \mathrm{~km} / \mathrm{hr}$

S25. Ans.(b)

Sol. Total distance travelled by both the trains before meeting = D
This distance will be covered in proportion of their speeds.
3 hours after meeting distance travelled by
$\mathrm{A}=3 \times \mathrm{S}_{\mathrm{A}}$
$B=3 \times S_{B}$
$3 \mathrm{~S}_{\mathrm{A}}+3 \mathrm{~S}_{\mathrm{B}}=675$
$S_{A}+S_{B}=225$
Remaining distance to be covered by 1 st train $=\frac{\mathrm{DS}_{\mathrm{B}}}{\mathrm{S}_{\mathrm{A}}+\mathrm{S}_{\mathrm{B}}}$
Time taken $\Rightarrow \frac{\mathrm{DS}_{\mathrm{B}}}{\left(\mathrm{S}_{\mathrm{A}}+\mathrm{S}_{\mathrm{B}}\right) \mathrm{S}_{\mathrm{A}}}=16$..
Remaining Distance covered by second train $=\frac{\mathrm{DS}_{\mathrm{A}}}{\left(\mathrm{S}_{\mathrm{A}}+\mathrm{S}_{\mathrm{B}}\right)}$
Time taken $\Rightarrow \frac{\mathrm{DS}_{\mathrm{A}}}{\left(\mathrm{S}_{\mathrm{A}}+\mathrm{S}_{\mathrm{B}}\right) \mathrm{S}_{\mathrm{A}}}=25 \ldots$ (ii)
Dividing (i) by (ii)
$\frac{\mathrm{S}_{\mathrm{A}}^{2}}{\mathrm{~S}_{\mathrm{B}}^{2}}=\frac{25}{16}$
$\mathrm{S}_{\mathrm{A}}=\frac{5}{4} \mathrm{~S}_{\mathrm{B}}, \mathrm{S}_{\mathrm{A}}+\frac{4}{5} \mathrm{~S}_{\mathrm{A}}=225$
$S_{A}=125$
$S_{B}=100$
From (i)
Time $=\frac{\mathrm{D}}{\mathrm{S}_{\mathrm{A}}}=16 \times \frac{225}{100}=36 \mathrm{~h}$

S26. Ans.(b)

Sol.

Speed of Bus $\rightarrow b$
Speed of Man \rightarrow m
When the bus goes from P to A , the man goes from C to A
Time taken by both are equal
$\therefore \frac{y}{b}=\frac{x}{m}$
$\frac{\mathrm{b}}{\mathrm{m}}=\frac{\mathrm{y}}{\mathrm{x}}$
When Bus goes from P to B, the man goes from C to B, Again time taken by both are equal.
$\frac{y+x+3 x}{b}=\frac{3 x}{m}$
$\frac{b}{m}=\frac{y+x+3 x}{3 x} \ldots$. (2)
From (1) \& (2)
$\frac{y}{x}=\frac{4 x+y}{3 x}$
$3 y=4 x+y$
$2 \mathrm{y}=4 \mathrm{x}$
$y=2 x$
From (1)
$\frac{b}{m}=\frac{2 x}{x}$
$\mathrm{b}=2 \mathrm{~m}$

S27. Ans.(a)
Sol. Speed of car A = a
Speed of car B = b
Let they meet after t minutes.
Distance travelled by car A before meeting car $B=a \times t$
Distance travelled by car B before meeting car $A=b \times t$
Distance travelled by car A after meeting car $\mathrm{B}=54 \mathrm{a}$
Distance travelled by car B after meeting car A=24 b
Distance travelled by car A after crossing car B = Distance travelled by car B before crossing car A (vice versa)
at $=54 \mathrm{~b}$
bt $=24 \mathrm{a}$
Multiplying (1) \& (2)
$\mathrm{abt}^{2}=54 \times 24 \times \mathrm{ab}$
$\mathrm{t}^{2}=54 \times 24$
$\mathrm{t}=36$ minutes
Both cars travelled 36 minutes before meeting
Time taken By B = $24+36=60$ minutes.

25 Previous Year Papers

S28. Ans.(a)

Sol. Train Car
$240210=8$ h 40 min.
$180270=9 \mathrm{~h}$
To travel extra 60 km by car increase in time $=20 \mathrm{~min}$
So, travel extra 240 km by car increase in time $=80 \mathrm{~min}$
$\therefore 450 \mathrm{~km}$ by car in $=8 \mathrm{~h} 40 \mathrm{~min}+80 \mathrm{~min}=10 \mathrm{~h}$
Speed of car $=450 / 10=45 \mathrm{~km} / \mathrm{h}$

S29. Ans.(d)

Sol. Let length $\rightarrow \mathrm{x}$ meters
speed of $B \rightarrow y \mathrm{kmph}$
$27=\frac{x+500}{(63+y)}$
$\frac{27}{3600}=\frac{x+0.5}{63+y}$.
$\frac{162}{3600}=\frac{x+0.5}{(36-y)} \ldots$ (2)
Form (1) \& (2)
$\frac{27}{3600} \times(63+y)=\frac{162}{3600} \times(63-y)$
$63+y=6(63-y)$
$63+y=378-6 y$
$7 \mathrm{y}=315$
$\mathrm{y}=45 \mathrm{~km}$
$\frac{27}{3600}=\frac{x+0.5}{108}$
$0.81=x+0.5$
$\mathrm{x}=0.31 \mathrm{~km}=310 \mathrm{~m}$

S30. Ans.(b)

Sol.
$\frac{D}{x-15}-\frac{D}{x}=45$
$\frac{\mathrm{D}}{\mathrm{x}}-\frac{\mathrm{D}}{\mathrm{x}+10}=20 \ldots$ (2)
Form (1) \& (2)
We will get $\mathrm{D}=9750 \mathrm{~km}$.

