Adda 247 Publications

BIDKS

$20+$ IBPS PO PRELIMS 2018 MOCK PAPER BASED ON LLTEST PATTERN
(EnglishMelium)

Visit: publications.adda247.com \& store.adda247.com
For any information, mail us at publications@adda247.com

Solutions

S1. Ans. (b)

Sol. Sum from PNB
$=\frac{12}{100} \times 8844 \times \frac{550}{300}$ crores $=1945.68$ crores

S2. Ans.(c)

Sol. Average sum from SBI, ICICI and Axis bank together
$=\frac{1}{3} \times \frac{(28+8+x)}{100} \times 8844$ crore
$\Rightarrow \frac{2948 \times(x+36)}{10}=1474$
$\Rightarrow \mathrm{x}=50-36$
$\Rightarrow \mathrm{x}=14 \%$
\therefore Required sum $=\frac{14}{100} \times 8844$ crores
$=1238.16$ crores

S3. Ans.(d)

Sol. Required total sum
$=8844-\frac{(28+8+14)}{100} \times 8844$
$=8844-4422=4,422$ crores

S4. Ans.(c)

Sol. Sum from (PNB + UBI) together
$=8844-\frac{62}{100} \times 8844$
$=3360.72$ crore
$\Rightarrow \frac{(2 \mathrm{x}+6)}{100} \times 8844=3360.72$
$\Rightarrow 2 \mathrm{x}+6=38$
$\Rightarrow \mathrm{x}=16 \%=$ sum from UBI
and sum from PNB $=16+6=22 \%$
\therefore Required ratio $=\frac{28+16}{22+14}=11: 9$

S5. Ans.(b)

Sol. Required average of sum
$=\frac{1}{3} \times \frac{(28+16+14)}{100} \times 8844$
$=1709.84$ crores

S6. Ans.(b)

Sol.
Rate $=\frac{10230 \times 100}{27500 \times 3}=12.4$
\therefore C. I. $=27500\left(\frac{112.4}{100}\right)^{2}-27500$
$=34742.84-27500 \simeq$ Rs. 7243

S7. Ans.(a)

Sol. Required no. Of ways $={ }^{4} C_{1} \times{ }^{5} C_{3}+{ }^{4} C_{2} \times{ }^{5} C_{2}+{ }^{4} C_{3} \times{ }^{5} C_{1}+{ }^{5} C_{4}$
$=40+60+20+5=125$

S8. Ans. (c)

Sol. Let A takes x and B takes $3 x$ days to finish the work
$\because 3 x-x=30 \Rightarrow x=15$
B's time to finish the work $=3 \times 15=45$ days
$\therefore(A+B)$'s 1 days work $=\frac{1}{15}+\frac{1}{45}$
$=\frac{4}{45}$
$\therefore(\mathrm{A}+\mathrm{B})$ will finish the work in $\frac{45}{4}$ days
i.e. $11 \frac{1}{4}$ days.

S9. Ans.(d)

Sol. Let the price of B per kg be Rs. X. Then, the price of A per $\mathrm{kg}=\mathrm{Rs}$. 3X
1 kg of C contains $2 / 7 \mathrm{~kg}$ of A and $5 / 7 \mathrm{~kg}$ of B
Price of 1 kg of $\mathrm{C}=(2 / 7) \times 3 \mathrm{X}+(5 / 7) \mathrm{X}=(11 / 7) \mathrm{X}$
By the given condition, 11X/7
$=5.20-0.80$
$=$ Rs. 4.40
$\Rightarrow \mathrm{X}=4.40 \times(7 / 11)=$ Rs. 2.80
Hence the price of B per $\mathrm{kg}=$ Rs. 2.80 .

S10. Ans.(c)

Sol. Let amount invested at 20\% per annum $=x$ Rs.
By mixture and allegation method

Ratio of amount $=3: 2$
\therefore Total amount invested $=\frac{12000}{3} \times 5=20,000$ Rs.

S11. Ans.(e)

Sol.

S12. Ans.(b)

Sol.
$1^{3}-1,2^{3}-1,3^{3}-1,4^{3}-1,5^{3}-1,6^{3}-1$
$=215$
S13. Ans.(c)
Sol.

$=351$
S14. Ans.(b)
Sol.

S15. Ans.(b)
Sol.

S16. Ans.(a)
Sol.
$11+1^{2}+12$
$12+2^{2}=16$
$16+3^{2}=25$
$25+4^{2}=41$
$41+5^{2}=66$
$66+6^{2}=102$
S17. Ans.(d)
Sol.
$7 \times 3-1=20$
$20 \times 3-1=59$
$59 \times 3-1=176$
$176 \times 3-1=527$
$527 \times 3-1=1580$

S18. Ans.(e)
Sol.

S19. Ans.(b)

Sol.

$1^{3}-1=0$
$3^{3}-1=26$
$5^{3}-1=124$
$7^{3}-1=342$
$9^{3}-1=728$
$11^{3}-1=1330$.

S20. Ans.(e)

Sol.
$18+(1 \times 13)=31$
$31+(2 \times 13)=57$
$57+(3 \times 13)=96$
$96+(4 \times 13)=148$
$148+(5 \times 13)=213$

S21. Ans.(b)

Sol. No. of male in E = 1800
So total population of $E=\frac{1800}{60} \times 100=3000$
So male population of city $\mathrm{A}=3000 \times \frac{15}{30} \times \frac{70}{100}=1050$

S22. Ans.(d)

Sol. Since we have to calculate percent
So, we will not use 80000
Let total population of state is 100 x
Total population of $\mathrm{D}=25 \mathrm{x}$
Female population of $B=20 \mathrm{x} \times \frac{60}{100}=12 \mathrm{x}$
Required $\%=\frac{25 x-12 x}{12 x} \times 100=108 \frac{1}{3} \%$

S23. Ans.(a)

Sol. Total female population of A, B and C city
$=250000 \times \frac{15}{100} \times \frac{30}{100}+250000 \times \frac{10}{100} \times \frac{40}{100}+250000 \times \frac{30}{100} \times \frac{40}{100}$
$=11250+10000+30000$
$=51250$
So Average female population of A, C and E
$=\frac{51250}{3}=17083 \frac{1}{3}$

S24. Ans.(c)

Sol. Total population of state in $2017=100000$
Population of city B in $2017=100000 \times \frac{20}{100}=20000$
Population of city B in $2018=20000 \times \frac{120}{100}=24000$
Population of city D in $2017=100000 \times \frac{25}{100}=25000$
Population of city D in $2018=25000 \times \frac{110}{100}=27500$
Required difference $=27500-24000=3500$

S25. Ans.(b)

Sol. Let total population of the state is 100 x
Required ratio $=\frac{100 \mathrm{x} \times \frac{20}{100} \times \frac{40}{100}+100 \mathrm{x} \times \frac{25}{100} \times \frac{50}{100}}{100 \mathrm{x} \times \frac{30}{100} \times \frac{40}{100}+100 \mathrm{x} \times \frac{10}{100} \times \frac{40}{100}}=\frac{41}{32}$

S26. Ans.(b)

Sol. 45.15% of $759.96 \div 18.9+?=(17.99)^{2}$
45% of $760 \div 19+$? $=324$
? = 306

S27. Ans.(d)

Sol. $\sqrt{728.83} \div 2.96+29.85 \div 5.99=?-4 \times 10$
$?=\sqrt{729} \div 3+30 \div 6+40$
$=27 \div 3+5+40$
$=9+5+40=54$

S28. Ans.(a)

Sol. $(1152.36+247.56) \div 6.95+\sqrt{624.5}=(?)^{2}$
$(1152+248) \div 7+\sqrt{625}=(?)^{2}$
$(1400 \div 7)+25=?^{2}$
$200+25=?^{2}$
? $=\sqrt{225}=15$

S29. Ans.(b)

Sol. $(4444.13 \div 40.07)+(649 \div 49.87)+(3991 \div 24.97)=$?
$\Rightarrow(4444 \div 40)+(650 \div 50)+(3990 \div 25)$
$=111.1+13+159.6$
$=283.7 \sim 284$

S30. Ans.(b)

Sol.
86.02% of $249.87+\frac{\sqrt[3]{1727.6}}{\sqrt{3.87}}=?+\sqrt{120.78}$
$\Rightarrow 86 \%$ of $250+\frac{\sqrt[3]{1728}}{\sqrt{4}}=?+\sqrt{121}$
$\Rightarrow 215+\frac{12}{2}=?+11$
$\Rightarrow 215+6=?+11$
? $=210$

S31. Ans. (b)

Sol. ? = 109.62 $+123.75=233.37$
? ≈ 233

S32. Ans.(c)

Sol.
$? \approx \frac{8400}{375} \times 15=336$
$? \approx 335$

S33. Ans.(c)

Sol.
$\frac{6 \sqrt{2}+14.275}{176}=$?
$? \approx \frac{8+14}{176}$
$?=\frac{1}{8}$

S34. Ans.(b)

Sol.
$? \approx 1600 \times \frac{200}{50}-1400+3880$
$\Rightarrow 6400-1400+3880=8880$
? ≈ 9000

S35. Ans.(a)

Sol.
$\frac{2}{5} \times 440+\frac{?}{100} \times 650=228$
$\Rightarrow 176+6.5 \times ?=228$
$\Rightarrow ?=\frac{228-176}{6.5}$
? ≈ 8

S36. Ans.(b)

Sol. Total male students participating in seminar in 2014
from all streams $=\left(\frac{5}{8} \times 40+\frac{5}{7} \times 35+\frac{7}{10} \times 20\right)$ thousands
= 64 thousand
Total female students who participated in 2013 from all streams
$=\left(\frac{1}{5} \times 30+\frac{1}{5} \times 25+\frac{1}{5} \times 15\right)$ thousands
$=14$ thousand
\therefore Required percentage $=\frac{64}{14} \times 100 \approx 457 \%$

S37. Ans.(c)

Sol. Total students (both male and female) from banking who asked questions in seminar in 2015
$=\left(\frac{10}{100} \times \frac{7}{10} \times 50+\frac{5}{100} \times \frac{3}{10} \times 50\right)$ thousand
$=(3.5+0.75)=4.25$ thousands
Total students from SSC who asked question in 2015
$=\frac{10}{100} \times 45000=4.5$ thousands
\therefore Required percentage $=\frac{4.25}{4.5} \times 100=94.44 \%$

S38. Ans.(c)

Sol. Required average $=\frac{1}{5} \times\left(\frac{4}{5} \times 15+\frac{7}{10} \times 20+\frac{6}{7} \times 35+\frac{3}{4} \times 30+\frac{3}{5} \times 40\right)$
$=\frac{1}{5} \times 102.5=20.5$ thousands

S39. Ans.(b)

Sol. Total no of male students from banking in 2016 and 2017 together
$=\frac{3}{5} \times 50+\frac{2}{3} \times 60=70$ thousands
Total no. of female students from SSC in 2016 and 2017 together
$=\frac{3}{8} \times 40+\frac{3}{10} \times 50=30$ thousands
\therefore Required percentage $=\frac{40}{30} \times 100=133 \frac{1}{3} \%$
S40. Ans.(d)
Sol. In 2012,
Total students who participated in seminar from Banking
$=30 \times \frac{90}{100}=27,000$
From SSC $=\frac{80}{100} \times 25,000=20,000$
From Railway $=\frac{75}{100} \times 15,000=11,250$.
No. of boys who participated in seminar in 2012
From Banking $=\frac{4}{5} \times 30,000-1000=23,000$
From SSC $=\frac{4}{5} \times 25,000-1500=18,500$
From Railway $=\frac{4}{5} \times 15,000-2000=10,000$
\therefore Required no. of girls $=(27,000-23,000)+(20,000-18,500)+(11,250-10,000)=6,750$

S41. Ans.(b)

Sol. Series is
$+9,-18,+27,-36,+45$
so, $25-36=-11$

S42. Ans.(e)

Sol. $6 \times 1+1,7 \times 3+3,24 \times 5+5,125 \times 7+7,882 \times 9+9$
so, $24 \times 5+5=125$

S43. Ans.(c)

Sol. Series is
$2+\left(1^{2}+1^{3}\right), 4+\left(2^{2}+2^{3}\right), 16+\left(3^{2}+3^{3}\right), 52+\left(4^{2}+4^{3}\right)$
so, $16+\left(3^{2}+3^{3}\right)=52$

S44. Ans.(a)

Sol. Series is
$\times 1+1, \times 1.5+1.5, \times 2+2, \times 2.5+2.5, \times 3+3$
So, $30 \times 3+3=93$

S45. Ans.(a)

Sol. Series is
$1^{3}+1,2^{3}-1,3^{3}+1,4^{3}-1,5^{3}+1$
So, $125+1=126$

S46. Ans.(e)
Sol. Let present ages of all the three are X, Y and Z respectively.
$\mathrm{X}=3 \mathrm{Y}+3$
$\mathrm{Z}=2 \mathrm{Y}$
$\mathrm{X}=\mathrm{Z}+12$
From equations (i), (ii) and (iii)
$\mathrm{X}-3 \mathrm{Y}=3$ and $\mathrm{X}-2 \mathrm{Y}=12$
After solving these two resultant equations, we get
$\mathrm{Y}=9$ years
\therefore Z's present age $=18$ years.

S47. Ans.(c)

Sol. Let in both schemes he invested Rs. P and 2 P respectively
ATQ, $\left|\mathrm{P}\left[\left(1+\frac{10}{100}\right)^{2}-1\right]-\frac{2 \mathrm{P} \times 8 \times 2}{100}\right|=990$
$\Rightarrow\left|\frac{21 \mathrm{P}}{100}-\frac{32 \mathrm{P}}{100}\right|=990$
$\Rightarrow \mathrm{P}=\frac{99000}{11}$
$\Rightarrow \mathrm{P}=9000$

S48. Ans.(b)

Sol. $($ Profit of A) : $($ Profit of B) $=12,500: 8,500$
= 125 : 85
= $25: 17$
40% of total profit $=240 \times \frac{(25+17)}{(25-17)}=1260$
$\therefore 100 \%$ profit $=\frac{1260}{40} \times 100=3150$

S49. Ans.(c)

Sol. Required probability $=\frac{{ }^{5} \mathrm{C}_{2}}{{ }^{14} \mathrm{C}_{2}}+\frac{{ }^{3} \mathrm{C}_{2}}{{ }^{14} \mathrm{C}_{2}}$
$=\frac{10}{91}+\frac{3}{91}=\frac{13}{91}=\frac{1}{7}$

S50. Ans.(c)

Sol. Required probability $=\frac{{ }^{6} \mathrm{C}_{2} \times{ }^{5} \mathrm{C}_{1}}{{ }^{15} \mathrm{C}_{3}}=\frac{15}{91}$

S51. Ans.(a)

Sol. Required difference
$=\left[\left(\frac{40+55+45+65+50+60}{6}\right)-\left(\frac{55+50+60+55+60+55}{6}\right)\right]$
$=\frac{315}{6}-\frac{335}{6}$
$=52.5-55.833=3.333$ lakhs

S52. Ans.(c)

Sol. Percentage increase
$=\frac{50-40}{40} \times 100$
$=\frac{10}{40} \times 100=25 \%$

S53. Ans.(a)

Sol. B, F \& D shows no growth
Growth percentage of $\mathrm{A}=\frac{55-40}{40} \times 100=37.5 \%$
Growth percentage of $\mathrm{C}=\frac{60-45}{45} \times 100=33 \frac{1}{3} \%$
Growth percentage of $\mathrm{E}=\frac{60-50}{50} \times 100=20 \%$
\therefore A shows maximum percentage of growth
S54. Ans.(b)
Sol. Required percentage
$=\frac{50+60}{50} \times 100$
$=\frac{110}{50} \times 100$
$=220 \%$

S55. Ans.(e)

Sol. Required ratio
$=\frac{45+45}{55+55}=\frac{90}{110}=9: 11$
S56. Ans.(d)
Sol. pattern is

S47. Ans.(b)

Sol. pattern is

S58. Ans.(e)

Sol. Pattern is

S59. Ans.(a)

Sol. pattern is

S60. Ans.(d)

Sol. pattern is

S61. Ans.(b)
Sol. Required Percentage $=\frac{980-780}{980} \times 100 \approx 20.4 \%$

S62. Ans.(c)

Sol. Required average $=\frac{1}{5}(750+280+510+760+640)=588$

S63. Ans.(e)

Sol. Required ratio $=\frac{560+780}{460+450}=\frac{1340}{910}=\frac{134}{91}$

S64. Ans.(b)

Sol. Required percentage $=\frac{2970}{5810} \times 100 \approx 51 \%$

S65. Ans.(a)

Sol. Total profit earned $=5810 \times \frac{45}{5}=$ Rs. 52,290

S66. Ans.(c)

Sol. $580+6-3=583$

S67. Ans.(b)

Sol. $\frac{75}{100} \times 1228+\frac{45}{100} \times 400$
$=\frac{3}{4} \times 1228+45 \times 4$
$=3 \times 307+180$
$=921+180=1101$.

S68. Ans.(e)

Sol. $1520+18420+\frac{1680}{80}$
$=19940+21=19961$

S69. Ans.(c)

Sol. $\frac{?}{100} \times 6300=225-\frac{44}{100} \times 225$
$? \times 63=225-11 \times 9 ; ?=\frac{126}{63}$
? = 2

S70. Ans.(b)

Sol. $18 \times 19=\frac{18}{100} \times 190 \times$?
? $=10$

S71. Ans.(c)

Sol. $\mathrm{A}+2 \mathrm{~B}+\mathrm{C}=59$...(i)
$3 A+B+C=68$
$A+3 B+3 C=108 \ldots$...iii)
Solving these equations together
$A=12$ years, $B=15$ years, $C=17$ years

S72. Ans.(b)

Sol. Ruby's annual income
$=12 \times 3 \times \frac{115}{100} \times 32,000$
$=$ Rs. 13,24,800

S73. Ans.(c)

Sol. Gross collection per day will increased by
$=\frac{1,68,000}{7}$
= Rs. 24,000

S74. Ans.(b)
Sol. Let C.P. to man per article $=\mathrm{x}$
\therefore S.P. of 800 articles $=864 \mathrm{x}$
and S.P. of 64 articles
$=\frac{864 x}{800} \times 64$
$=69.12 \mathrm{x}$
$\therefore \%$ profit $=\frac{933.12-864}{864} \times 100=8 \%$

S75. Ans.(c)

Sol. Let investment made by Rashmi in scheme A= Rs. x
\therefore Investment made by her in scheme $B=(4200-\mathrm{x})$
ATQ,
$\frac{\mathrm{x} \times 22 \times 4}{100}-(4200-\mathrm{x})\left[\left(1+\frac{10}{100}\right)^{2}-1\right]=1516$
$\Rightarrow \frac{88 x}{100}-\frac{(4200-x) \times 21}{100}=1516$
$\Rightarrow 109 \mathrm{x}-88,200=1,51,600$
$\Rightarrow \mathrm{x}=2200$

S76. Ans.(b)

S78. Ans.(a)

Sol.

S79. Ans.(c)
Sol.

S80. Ans.(e)

Sol.

S81. Ans.(b)
Sol. Required \%
$=\frac{\left(\frac{10+35}{2}\right)-\left(\frac{10+20}{2}\right)}{\left(\frac{10+20}{2}\right)} \times 100=50 \%$

S82. Ans.(d)

Sol. Total quantity of water available $=7000 \times \frac{8}{7}$ liter $=8000$ liter
Required ratio $=\frac{1000}{(35-20) \times \frac{7000}{100}}=\frac{1000}{1050}=\frac{20}{21}$

S83. Ans.(a)

Sol. Required ratio $=\frac{(35+20)}{(10+10)}=\frac{55}{20}=\frac{11}{4}$

S84. Ans.(e)

Sol. $3 \frac{1}{7} \%$ of Quantity of water consumed by $S=\frac{22}{7 \times 100} \times \frac{35}{100} \times 7000=77$ liter
Required percentage $=\frac{77}{\frac{10 \times 7000}{100}} \times 100=11 \%$

S85. Ans.(a)

Sol. Required quantity $=\frac{(35-20) \times 7000}{100}-\frac{(20-10)}{100} \times 7000$
$=\frac{5}{100} \times 7000=350$ liter

S86. Ans.(d)

Sol. Let daughter's present age be x years.
Then, Shalini's present age $=5 \mathrm{x}$ years
Ratio of present age of
Daughter : Shalini : Father
2x 10x $25 x$
ATQ,
$2 x+10 x+25 x=43 \times 3-18$
$\Rightarrow \mathrm{x}=3$
Required ratio $=\frac{2 x}{25 x-10 x}=\frac{2 \times 3}{15 \times 3}=2: 15$

S87. Ans.(c)

Sol. Required probability $=\frac{1}{7} \times \frac{4}{5}+\frac{6}{7} \times \frac{1}{5}$
$=\frac{4+6}{35}=\frac{10}{35}=\frac{2}{7}$

S88. Ans.(c)

Sol. let the radius of the outer circle be R m .
And the radius of the inner circle be r m .
Then, according to the question
$2 \pi r-2 \pi r=88$
or, $R-r=\frac{88 \times 7}{2 \times 22}=14$
Or, $\mathrm{R}=14+\mathrm{r}=14+3.5=17.5 \mathrm{~m}$
Now, area of the road $=\pi\left(17.5^{2}-3.5^{2}\right)$
$=\frac{22}{7} \times 21 \times 14=924 \mathrm{~m}^{2}$

S89. Ans.(a)

Sol. Required number of 5 digit number $=-$

$=2160$

S90. Ans.(e)

Sol. Let initially chiru has Rs. x with him.
ATQ,
$\frac{x}{8}+9=\frac{x}{5}$ (he saves Rs. 9 per dozen)
$\Rightarrow \frac{x}{5}-\frac{x}{8}=9 \Rightarrow \frac{3 x}{40}=9$
$\Rightarrow \mathrm{x}=$ Rs. 120

Sol. Number of males in city $K=\frac{40}{100} \times 20,000=8000$
Number of males who left city $K=\frac{40}{100} \times 8000=3200$
Number of males in city $L=\frac{60}{100} \times 25,000=15000$
Total number of males in city L after Males who joined city L
$=15000+3200=18200$
S92. Ans.(c)
Sol. Literate people from city L

- 10 FULL-LENGTHMOCKS

Bilingual
$=\frac{7}{10} \times 25,000=175,00$
Illiterate people from city M
$=\frac{8}{10} \times 35,000=28000$
\therefore Percentage $=\frac{17500}{28000} \times 100=62.5 \%$

S93. Ans.(a)
Sol. 30 percent of male from city M
$=\frac{20}{100} \times 35,000 \times \frac{30}{100}$
$=2100$
$\therefore 2100$ male from city M are illiterate
Female from city M who are illiterate
$=\frac{4}{5} \times 35,000-2100$
$=28000-2100=25900$
\therefore Ratio $=\frac{2100}{25900}=21: 259$
S94. Ans.(b)
Sol. Required average
$=\frac{15000+7500+28000+24000+27500}{5}=20400$

S95. Ans. (d)
Sol. Since the illiterate males from city K and city L cannot be determined.

S96. Ans.(d)

Sol. The distance between them 1 minute before they collide is equal to the distance covered by them towards each other in 1 minute.
Hence, req. answer $=\left(\frac{1}{60}\right) \times 15=\frac{1}{4}=0.25 \mathrm{~km}$

S97. Ans.(c)

Sol. ATQ,
$\frac{2000 \times x}{100}+\frac{2000 \times(x+2)}{100}+\frac{2000 \times(x+4)}{100}+\frac{2000 \times(x+6)}{100}+\frac{2000 \times(x+8)}{100}=1500$
or, $\frac{2000}{100}(x+x+2+x+4+x+6+x+8)=1500$
or, $5 x+20=\frac{150}{2}$
or, $x=11$

S98. Ans.(b)

Sol. Average C. P. of all three varieties $=30 \times \frac{5}{6}=$ Rs. 25
Let, x kgs of first variety
y kys of second variety
are taken,
then,
$(x+y+2) 25=20 x+24 y+30 \times 2$
or, $5 x+y=10$
$x=1 \& y=5$
are the only possible values.
Hence, 5 kgs of second variety are taken.

S99. Ans.(c)

Sol. Total ways of arranging the four letters $=\frac{4!}{2!2!}=6$
No. of arrangements where vowels are together $=\frac{(4-2+1)!}{2!}=3$
Req. no. of ways $=6-3=3$

S100. Ans.(d)

Sol. Let, the distance between X and Y be ' x ' km.
When B covers ' $x-11$ ' km, A covers ' $x+11$ ' km
When B covers ' $x+9$ ' km, C covers ' $x-9$ ' km
ATQ,
$\frac{\frac{(x+11)}{(x-11)} \times(x+9)}{(x-9)}=\frac{3}{2}$
or, $2\left(x^{2}+20 x+99\right)=3\left(x^{2}-20 x+99\right)$
or, $x^{2}-100 x+99=0$
or, $x=99,1$
Hence, answer is $x=99$, as $x=1$ is not acceptable.

S101. Ans.(a)

Sol.
$?=\frac{144 \times 12 \times 36 \times 36}{432}=5184$

S102. Ans.(d)

Sol. (? $)^{2}=121$
? $=11$

S103. Ans.(d)
Sol.
? $=\frac{7}{3}+\frac{17}{5} \times \frac{5}{4}-\frac{8}{3}$
$=\frac{7}{3}+\frac{17}{4}-\frac{8}{3}$
$=\frac{17}{4}-\frac{1}{3}$
$=\frac{51-4}{12}$
$=\frac{47}{12}$

S104. Ans.(c)

Sol.
$\frac{1898}{73} \times 72=(?)^{2} \times 13$
$\Rightarrow 26 \times 72=(?)^{2} \times 13$
$\Rightarrow(?)^{2}=\frac{26 \times 72}{13}=144$
$\therefore ?=\sqrt{144}=12$

S105. Ans.(d)

Sol.
$\left\{(0.9)^{2}\right\}^{2} \div\left\{(0.9)^{3}\right\}^{3} \times(0.9)^{2}=(0.9)^{?-3}$
$\Rightarrow(0.9)^{4} \div(0.9)^{9} \times(0.9)^{2}=(0.9)^{?-3}$
$\Rightarrow(0.9)^{4-9+2}=(0.9)^{?-3}$
\Rightarrow ? $=3-3=0$

S106. Ans.(b)

Sol.Series is $\times 1.5+1, \times 3+2, \times 6+3, \times 12+4 \ldots$.
\therefore ? $=60 \times 12+4=724$

S107. Ans.(c)

Sol. Series is $+8,+16,+32,+64,+128$...
\therefore ? $=122+128=250$
S108. Ans.(d)
Sol.

S109. Ans.(a)

Sol. Series is $\times 1+2, \times 3+4, \times 5+6, \times 7+8, \times 9+10 \ldots$
$\therefore ?=715 \times 9+10$
$=6445$

S110. Ans.(b)

Sol. Series is +13, +26, +39, +52, +65
\therefore ? $=261+65=326$

S111. Ans.(b)

Sol. Required percentage
$=\frac{20 \times 25-22 \times 20}{20 \times 25} \times 100=12 \%$

S112. Ans.(c)

Sol. Required average $=\frac{(18+16) \times 20}{(18+14) \times 25}=\frac{17}{20}$

S113. Ans.(a)

Sol. No. of missiles purchased by India
$=\frac{(32 \times 25-32 \times 20)}{25}$ lakhs
$=6.4$ lakhs

S114. Ans.(b)

Sol. Required answer
$=\frac{1}{3} \times \frac{48}{100} \times 25-\frac{1}{3} \times \frac{46}{100} \times 20$
$=93333 \frac{1}{3}$ crore

S115. Ans.(d)

Sol. Budget allotted for health sector in 2018
$=\frac{125}{100} \times \frac{16}{100} \times 20,000,00$
$=4,00,000$ crore
\therefore Required answer $=\frac{4}{25} \times 100=16 \%$

S116. Ans.(a)

Sol. One minute's work of third tap
$=\left(\frac{1}{10}+\frac{1}{12}\right)-\frac{1}{15}=\frac{7}{60}$
\therefore time taken by third tap to empty the filled tank
$=\frac{60}{7} \min$ or $8 \min 34 \mathrm{sec}$.

S117. Ans.(b)

Sol. Time taken by both pipes X and Y to fill $1 / 3$ rd of the tank
$=\frac{1}{3} \times\left(\frac{10 \times 15}{25}\right)=2 \mathrm{hrs}$.
\therefore Total time to fill the tank
$=2+\frac{(10 \times 15)}{25}$
$=8 \mathrm{hrs}$.

S118. Ans.(b)

Sol. Let required length is x metres.
$\frac{300 \times 1}{(405 \times 5.5 \times 4)}=\frac{2000 \times 6}{20 \times 16 \times x}$
$\Rightarrow \mathrm{x}=1113.75 \mathrm{~m}$

S119. Ans.(a)

Sol. 2 days work by given no. of persons
$=\frac{4 \times 2}{6 \times 12}+\frac{12 \times 2}{8 \times 18}+\frac{20 \times 2}{18 \times 10}$
$=\frac{1}{2}$
Remaining work $=1-\frac{1}{2}=\frac{1}{2}$
\therefore Required number of men $=\frac{1}{2} \times 72$
$=36$

S120. Ans.(a)

Sol. Required ratio $=\frac{30}{28 \times 15}: \frac{18}{15 \times 24}$
$=10: 7$

Solution (121-125):

Number of Medical books $=\frac{24000 \times 7}{16}=10,500$
Number of Non-Medical books $=24,000-10,500=13,500$
Number of books for MBBS $=\frac{10,500}{210} \times 110=5500$
Number of books for BDS $=10500-5500=5000$
Number of books for BSC $=13,500 \times \frac{36}{100} \times \frac{4}{9}=2160$.
Number of books for Diploma $=13,500 \times \frac{36}{100}-2160=2700$
Total number of books for management and engineering $=13,500-(2160-2700)=8640$
Number of books for management $=8640 \times \frac{21}{48}=3780$.
Number of books for engineering $=8640-3780=4860$

S121. Ans.(b)

Sol. Required difference $=5000-4860=140$

S122. Ans.(a)

Sol. Required ratio $=\frac{(5500+2700)}{(3780+4860)}=\frac{205}{216}$

S123. Ans.(d)

Sol. Required $\%=\frac{(5500-3780)}{5500} \times 100=31 \frac{3}{11} \%$

S124. Ans.(a)

Sol. Required $\%=\frac{8640}{10500} \times 100=\frac{576}{7} \%=82 \frac{2}{7} \%$

S125. Ans.(c)

Sol. Required difference $=(4860+2160+2700)-(5000+3780)=9720-8780=940$

S126. Ans.(c)

Sol.
$\frac{40}{100} \times ?-\frac{50}{100} \times 36 \simeq \frac{40}{100} \times 260$
\Rightarrow ? $\simeq \frac{284}{40} \times 100$
$\Rightarrow ? \simeq 710$

S127. Ans.(a)

Sol.

$?=\frac{3}{4} \times \frac{7}{5} \times 100+\frac{3}{4} \times 432$

$? \simeq 105+324$
$? \simeq 429$

S128. Ans.(d)

Sol.
? $\simeq 224+369+460-381$
? $\simeq 1053-381$
$? \simeq 672$

S129. Ans.(a)
Sol.
$? \simeq \sqrt{\frac{30}{100} \times 450+\frac{20}{100} \times 170}$
$? \simeq \sqrt{135+34}$
$? \simeq \sqrt{169}$
$? \simeq 13$

Sol.
? $\simeq 110 \div 22 \times 60+315-220$
? $\simeq 615-220$
$? \simeq 395$
$2 \pi .9 x^{2}$
$=18 \pi x^{2}$
If height of cylinder is reduced by $12 \frac{1}{2} \%$
Then new total surface area
$=2 \pi \mathrm{x} .7 \mathrm{x}+2 \pi \mathrm{x}^{2}$
$=2 . \pi .8 \mathrm{x}^{2}$
$=16 \pi x^{2}$
So, percentage change in area
$=\frac{18 \pi x^{2}-16 \pi x^{2}}{18 \pi x^{2}} \times 100$
$=\frac{2}{18} \times 100$
$=\frac{1}{9} \times 100=11 \frac{1}{9} \%$
S132. Ans.(b)
Sol. ATQ,
$\frac{2}{3} \pi R^{3}=4 \times \frac{4}{3} \pi r^{3}$
$R^{3}=8 r^{3}$
$\mathrm{R}=2 \mathrm{r}$

S133. Ans.(d)

Sol. Let radius of circle be rcm .
$\therefore \mathrm{r}=\mathrm{a}=\sqrt{144}=12 \mathrm{~cm}$
ATQ,
Let radius of hemisphere be R.
$3 \pi R^{2}+3 \pi R^{2}=\pi r^{2}$
$6 \pi R^{2}=\pi \times 12 \times 12$
$\mathrm{R}=\sqrt{24}$
$=2 \sqrt{6} \mathrm{~cm}$

S134. Ans.(c)

Sol. Let A, B are inlet pipe and C are outlet pipe

Let total volume $=240 \mathrm{~L}$
Work done on 3 hours $=3(20+16)-30$
$=108-30=78$
So, $78 \times 3=234 \mathrm{~L}$ can be filled in 9 hours.
Now 6 unit are still remaining
$=\frac{6}{36} \times 60 \mathrm{~min}=10 \mathrm{~min}$
So total time $=9$ hours 10 min

S135. Ans.(e)

Sol. Let speed of stream $=\mathrm{y} \mathrm{kmph}$
ATQ, $\frac{12}{5.5-y}=\frac{21}{5.5+y}$
$\Rightarrow \mathrm{y}=1.5 \mathrm{kmph}$
Required percent $=\frac{(5.5-1.5)}{1.5} \times 100$
$=\frac{40}{15} \times 100=266 \frac{2}{3} \%$
S136. Ans.(d)
Sol. Number of children who are attending school from M, L and O $=(32 \%+14 \%+20 \%)$ of 1450
$=\frac{66}{100} \times 1450=957$
Number of children who are not attending school from L, N and P = 55\% of $2040-48 \%$ of $1450=$ $1122-696=426$
Required ratio $=\frac{957}{426}=\frac{319}{142}$

S137. Ans.(a)

Sol. Total number of children who are attending school from M, N and $0=(32 \%+12 \%+20 \%)$ of 1450 $=464+174+290=928$
Number of children who are attending school from P and L = 36\% of $1450=522$
Number of children who are not attending school from village $0=408-290=118$
Required percentage $=\frac{928-(522+118)}{522+118} \times 100=45 \%$

S138. Ans.(e)

Sol. Number of students who attended school from M, L, N $=(32 \%+14 \%+12 \%)$ of $1450=841$
Number of students who have not attend school from $N=\frac{10}{100} \times 2040-\frac{12}{100} \times 1450=30$
Number of students who have not attended school from $0=408-290=118$
Hence, percentage increase in number of children who have attended school from M, L, and N
$=\frac{118+30}{841} \times 100=17.6 \%$

S139. Ans.(c)

Sol. Average of children who are attending school from L, M, N and 0
$=\frac{1450-\frac{22}{100} \times 1450}{4}=\frac{1131}{4}=282.75$
Total children who are not attending school from village P, N and $\mathrm{M}=65 \%$ of 2040-66\% of $1450=369$ Average $=\frac{369}{3}=123$
Difference in Average $=282.75-123=159.75 \approx 160$

S140. Ans.(d)
Sol. Children who are going school from P, L and O = ($22 \%+14 \%+20 \%)$ of 1450
$=\frac{56}{100} \times 1450=812$
Children who are from village 0, P and $\mathrm{M}=(20 \%+30 \%+25 \%)$ of 2040
$=\frac{75}{100} \times 2040=1530$
Required difference $=1530-812=718$
S141. Ans.(e)
Sol. Using both the statements, since Rahul got less than 83% in Science and still got admission, he must have got more than 88% in Mathematics.
Hence both the statements are necessary to answer the question

S142. Ans.(c)

Sol. From I.
$\therefore 32$ boys $=32 \times \frac{3}{4}=24$ men
Let 20 men do the work in x days.
$\because 20 x=24(x-10)$
$\therefore x=60$ days
20 men can do the job in 60 days
$\therefore 10$ men will do the same job in $60 \times 2=120$ days
Hence, statement I alone is sufficient to answer the question.

From statement II.

$\because 1$ woman = 1 boy
$\because 1$ man, 1 woman and 1 boy $=1$ man and 2 boys
$\because 1$ boy completes the work in 70 days.
$\because 2$ boys complete the work in 35 days.
And 1 man and 2 boys work for 7 days.
1 man will take $\left(\frac{35 \times 7}{35-7}\right)$ days, ie $\frac{35}{4}=8 \frac{3}{4}$ days.
$\therefore 10$ men will do the same job in $\frac{\frac{35}{4}}{10}$
$=\frac{35}{40}$ days.
Therefore, statement II alone also can give the answer.
Hence, either I alone or II alone can answer the question.

S143. Ans.(e)

Sol. Let the labeled price be Rs. x.
Then, from I. CP $=\frac{x \times 75}{100}=\frac{3 x}{4}$
From II. SP $=\frac{x \times 115}{100}=\frac{23 x}{20}$
Now, $\frac{23 x}{20}=34500$
$\therefore x=\frac{34500 \times 20}{23}=$ Rs. 30000
$\therefore \mathrm{CP}=\frac{3 x}{4}=\frac{3 \times 30000}{4}=$ Rs. 22500
Hence, Mr. Gupta's cost price = Rs. 22500
Thus, both statements are necessary to answer the question.

S144. Ans.(e)

Sol. From I and II. Let the speed of A be $4 x \mathrm{~km} / \mathrm{hr}$ and speed of B be $5 x \mathrm{~km} / \mathrm{hr}$ respectively.
Then $5 x-4 x=20 \mathrm{kmph}$
or, $x=20 \mathrm{kmph}$
Now, speed of $A=4 \times 20=80 \mathrm{kmph}$
Speed of B $=5 \times 20=100 \mathrm{kmph}$
\therefore Distance between P and $\mathrm{Q}=\mathrm{D} \mathrm{km}$
Now, $\frac{\mathrm{D}}{80}-\frac{\mathrm{D}}{100}=1$
or, $\frac{5 \mathrm{D}-4 \mathrm{D}}{400}=1$
$\therefore \mathrm{D}=400 \mathrm{~km}$

S145. Ans.(a)

Sol. From I:
Number of children $=42$

S146. Ans.(e)

Sol. I. $\sqrt{x+18}=\sqrt{144}-\sqrt{49}$
$\Rightarrow \sqrt{x+18}=5$
$\Rightarrow x+18=25$
$\Rightarrow x=7$
II. $y^{2}+409=473$
$\Rightarrow y^{2}=64$
$\Rightarrow y= \pm 8$
No relation between x and y .
S147. Ans.(a)
Sol. I. $y^{2}-x^{2}=32$
$\Rightarrow(x+2)^{2}-x^{2}=32$
$\Rightarrow x^{2}+4+4 x-x^{2}=32$
$\Rightarrow 4 x=28$
$\Rightarrow x=7$
II. $\mathrm{y}-\mathrm{x}=2$
$\Rightarrow y-7=2$
$\Rightarrow y=9$
$\therefore x<y$
S148. Ans.(e)
Sol. I. $\sqrt{x}-\frac{\sqrt{5}}{\sqrt{x}}=0$
$\Rightarrow \frac{x-\sqrt{5}}{\sqrt{x}}=0$
$\Rightarrow x-\sqrt{5}=0$
$\Rightarrow x=\sqrt{5}$
II. $y^{3}-5^{\left(\frac{3}{2}\right)}=0$
$\Rightarrow y=5^{\frac{1}{2}}=\sqrt{5}$
$\therefore x=y$
S149. Ans.(a)
Sol. I. $8 x^{2}+78 x+169=0$
$\Rightarrow 8 x^{2}+52 x+26 x+169=0$
$\Rightarrow 4 x(2 x+13)+13(2 x+13)=0$
$\Rightarrow(4 x+13)(2 x+13)=0$
$\Rightarrow x=-\frac{13}{4},-\frac{13}{2}$
II. $20 y^{2}-117 y+169=0$
$\Rightarrow 20 y^{2}-65 y-52 y+169=0$
$\Rightarrow 5 y(4 y-13)-13(4 y-13)=0$
$\Rightarrow(5 y-13)(4 y-13)=0$
$\Rightarrow y=\frac{13}{5}, y=\frac{13}{4}$
$\therefore x<y$
S150. Ans.(b)
Sol. I. $\frac{15}{\sqrt{x}}+\frac{9}{\sqrt{x}}=11 \sqrt{x}$
$\Rightarrow \frac{15+9}{\sqrt{x}}=11 \sqrt{x}$
$\Rightarrow 11 x=24$
$\Rightarrow x=\frac{24}{11}$
II. $\frac{\sqrt{y}}{4}+\frac{5 \sqrt{y}}{12}=\frac{1}{\sqrt{y}}$
$\Rightarrow \frac{3 \sqrt{y}+5 \sqrt{y}}{12}=\frac{1}{\sqrt{y}}$
$\Rightarrow 3 y+5 y=12$
$\Rightarrow y=\frac{12}{8}=\frac{3}{2}$
$\therefore x>y$

