Q.1 Introducing Kannan, Swathi said, "His mother is the only daughter of my mother". How is Kannan related to Swathi?

Ans

1. Uncle
2. Father
3. Son
4. Brother

Q.2 Find the wrong term from the following series:

1, 6, 16, 31, 51, 76, 106, 140, 181, 226

Ans

1. 226
2. 51
3. 76
4. 140

Q.3 Which number will replace the question mark (?) in the following series?

14, 15, 19, 46, 62, ?

Ans

1. 185
2. 187
3. 183
4. 181
Q.4 Choose the similar pair for the following:

343 : 6 :: ______ : ______

Ans
1. 256 : 4
2. 196 : 17
3. 225 : 15
4. 512 : 7

Q.5 Choose the correct alternative for the following:

\(\frac{3}{8} : 73 :: \frac{7}{9} : ______ \)

Ans
1. 1.165
2. 2.265
3. 3.130
4. 4.256

Q.6 Three of the given four numbers are similar in a certain manner while one is different. Choose the odd one out.

Ans
1. 233
2. 277
3. 271
4. 261

Q.7 From the following figures choose that figure which is different from the other:

![Figures](image)

Ans
1. 1
2. 4
3. 3
4. 2
Q.8 In the following question, a statement is given followed by four conclusions. Without resolving anything yourself, choose the conclusion which logically follows from the given statement:

Statement:
All beggars are poor.

Conclusions:
I. If X is a beggar, then X is not rich.
II. If X is not rich, then X is not a beggar.
III. All those who are poor are beggars.
IV. If X is rich, then X is not a beggar.

Ans
1. Only conclusion II follows.
2. Either conclusion III or IV follow.
3. Only conclusion I follows.
4. All conclusion follows.

Q.9 Choose the number which is different from others:

Ans
1. 13
2. 11
3. 9
4. 7

Q.10 Two statements and two conclusions are given. Choose the comment about conclusion from the given options below:

Statements:
All hill stations have a sun-set point.
A is a hill station.

Conclusions:
I. A has a sun-set point.
II. Places other than hill stations do not have sun-set point.

Ans
1. Only conclusion I follows
2. Either conclusion I or II follows
3. Only conclusion II follows
4. Neither conclusion I nor II follows

Section: General Awareness

Q.1 In economic terms, a _____ is a system or scheme which buys and stores stocks at times of good harvests to prevent prices falling below a target range (or price level), and releases stocks during bad harvests to prevent prices rising above a target range (or price level).
Q.2 There are _____ schools of Indian Philosophy known as ‘Shad Darshanas’.

Ans: 1. Six
2. Eight
3. Four
4. Five

Q.3 Which ancient city is named after Romulus?

Ans: 1. Reno
2. Ramona
3. Rosemont
4. Rome

Q.4 Inter-State Council was constituted in which year?

Ans: 1. 2006
2. 1999
3. 2004
4. 1990

Q.5 The 11th Fundamental Duty was added by which Constitutional Amendment Act?

Ans: 1. 98th Constitutional Amendment Act, 2012
2. 42nd Constitutional Amendment Act, 1976
3. 86th Constitutional Amendment Act, 2002
4. 84th Constitutional Amendment Act, 2001
Q.6 Indian archaeologists recently unearthed a rare life-sized stucco sculpture from a Buddhist site at_____.

Ans
1. Telangana ✔️
2. Assam ❌
3. Chhattisgarh ❌
4. Bihar ❌

Q.7 India has set a world record by launching ____ number of satellites in a single mission.

Ans
1. 82 ❌
2. 115 ❌
3. 104 ✔️
4. 67 ❌

Q.8 The last captive White tiger named 'Bajirao' who recently died belonged to which of the following National Parks?

Ans
1. Ranthambore National Park ❌
2. Panna National Park ❌
3. Corbett National Park ❌
4. Sanjay Gandhi National Park ✔️

Q.9 Bohag Bihu is the____ New year celebrated by performing the folk dance Bihu and a grand buffet.

Ans
1. Assamese ✔️
2. Manipuri ❌
3. Odia ❌
4. Bengali ❌

Q.10 Who won India's First Gold medal in Men's 10 m Air Pistol shooting at the Asian Games 2018?

Ans
1. Apurvi Chandela ✔️
2. Jeetu Rai ❌
3. Deepak Kumar ❌
4. Saurabh Chaudhary ✔️
Section: Teaching Aptitude

Q.1 Which area of social science teaches the concepts of ‘plurality’ and ‘change’?

Ans

1. Geography
2. History
3. Economics
4. Politics

Q.2 Which statement is correct with respect to the relationship between intelligence and creativity?

Ans

1. Intelligence is not required for creative expression.
2. Intelligence and creativity are only acquired from environment.
3. There is no difference between intelligence and creativity.
4. Intelligence and creativity are two independent functions of a human personality.

Q.3 According to the guidelines by NCERT, how much time should be allocated for art education in schools?

Ans

1. One-fourth of the total time
2. One-fifth of the total time
3. One-third of the total time
4. One-sixth of the total time

Q.4 According to the National Sample Survey conducted in 1986-87, ____ could never enroll as students since their priority is attending to household chores.

Ans

1. males and females from urban areas only
2. rural females only
3. males and females from urban and rural areas
4. urban males only

Q.5 Which mathematical topic that is best seen as a compact language and a means of succinct expression is introduced at upper primary stage?
Q.6 Who said the following statement?

“It is more useful to know how to mathematise than to know a lot of mathematics.”

Ans

1. David Wheeler ✔
2. Zakir Husain ❌
3. George Polya ❌
4. Mahatma Gandhi ❌

Q.7 What was the earliest mode of distance education?

Ans

1. Face-to-face sessions combined with online learning ❌
2. Teleconferencing ❌
3. Education through correspondence ✔
4. Video conferencing ❌

Q.8 A teacher conducted a practical activity with the children of Class 4 by giving them activity kits. All the children participated in the activity and were involved throughout. What is the best way for the teacher to ensure that the students have achieved the intended learning from the activity?

Ans

1. Give them a worksheet to solve ❌
2. Ask them questions ❌
3. Ask the children to talk about their experience one by one in front of the class ❌
4. Allow individual student reflections through discussion with peers or with the teacher ✔

Q.9 What is the focus of self-learning online courses for teachers in the draft of the New Education Policy, 2016?

Ans

1. Child rights ✔
2. Equity and equality ❌
3. Gender sensitivity ❌
Q.10 How can we avoid gender bias while using language for teaching social studies in a classroom?

Ans

- 1. By giving equal weightage to all genders
- 2. By avoiding technical terms
- 3. By carefully choosing the adjectives to be used for different genders
- 4. By showing only pictures without using any language

Q.11 Which of the following is NOT an objective of the National Adult Education Programme (NAEP) launched in 1978?

Ans

- 1. Promotion of literacy
- 2. Creation of awareness
- 3. Creation of employment
- 4. Raising functional capabilities

Q.12 A teacher asks her students to read the news about recent events in the state. Then the students are asked to classify the events into different ‘ruling systems’. The purpose of this learning activity is to ______ the topic.

Ans

- 1. understand
- 2. recall
- 3. research
- 4. revise

Q.13 Compared to a child growing up in one place, a child growing up in a migrating family is typically able to:

Ans

- 1. connect with people
- 2. develop critical thinking
- 3. maintain calm
- 4. develop creative thinking
Q.14 What was the specific measure suggested by a teenage girl during the course of deliberations over the National Curriculum Framework review by NCERT?

Ans
1. To explain different concepts with clarity and give examples from the children's lived realities.
2. To identify reasons for lack of participation of girls at secondary stage.
3. To inculcate greater self-awareness among boys regarding their behaviour towards girls.
4. To build separate toilets for girls.

Q.15 ________ is a school of philosophy that praises and rewards group performance.

Ans
1. Particularism
2. Universalism
3. Individualism
4. Communitarianism

Section: Subject Knowledge

Q.1 The maximum sum of the series $20 + 19\frac{1}{3} + 18\frac{2}{3} + 18 + \cdots$ is:

Ans
1. 320
2. 310
3. 300
4. 290

Q.2 If p times the p^{th} term of an AP be equal to q times the q^{th} term, then $(p + q)^{th}$ term is:

Ans
1. $p + q$
2. $2p + 3q$
3. 0
4. $p - q$
For the two frequency distributions given in the following table, the mean calculated from the first was 25.4 and that from the second term was 32.5. Find the values of x and y:

<table>
<thead>
<tr>
<th>Class</th>
<th>Distribution I frequency</th>
<th>Distribution II frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-20</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>20-30</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>30-40</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>40-50</td>
<td>x</td>
<td>$2x$</td>
</tr>
<tr>
<td>50-60</td>
<td>y</td>
<td>y</td>
</tr>
</tbody>
</table>

Ans

1. $x = 2$, $y = 3$
2. $x = 3$, $y = 2$
3. $x = 5$, $y = 2$
4. $x = 3$, $y = 4$

Q.4 If x and y are positive real numbers such that $x^2y^2 = 32$, then the least value of $2x + 3y$ is:

Ans

1. 20
2. 15
3. 5
4. 10

Q.5 The minimum value of the sum of real numbers $a^{-5}, a^{-4}, 3a^{-2}, 1, a^{2}, a^{10}$ with $a > 0$ is:

Ans

1. 7
2. 9
3. 6
4. 8

Q.6 If α, β are zeros of $x^2 - 6x + k$. What is the value of k if $3\alpha + 2\beta = 20$:

Ans

1. 8
2. -8
3. -2
4. -16
Q.7 Three cubes of sides 1 cm, 6 cm and 8 cm are melted to form a new cube. Find half of the surface area of the new cube?

Ans
1. 293 cm²
2. 463 cm²
3. 486 cm²
4. 243 cm²

Q.8 The left hand limit of the function \(f(x) = \begin{cases} \frac{|x-4|}{(x-4)} , & x \neq 4 \\ 0, & x = 4 \end{cases} \) at \(x = 4 \), is:

Ans
1. 1
2. -1
3. 0
4. None

Q.9 If \(A \) and \(B \) are two events such that \(P(A) > 0 \) and \(P(B) \neq 1 \), then \(P(\bar{A} | B) \) is equal to:

Ans
1. \(1 - P(\bar{A} / B) \)
2. \(1 - \frac{P(A \cap \bar{B})}{P(B)} \)
3. \(\frac{P(\bar{A})}{P(B)} \)
4. \(1 - P(A / B) \)

Q.10 Find the zeros of the quadratic polynomial \(\sqrt{3}x^2 - 8x + 4\sqrt{3} \):

Ans
1. \(-2\sqrt{3}, \frac{2}{\sqrt{3}} \)
2. \(-2\sqrt{3}, \frac{-2}{\sqrt{3}} \)
3. \(2\sqrt{3}, \frac{2}{\sqrt{3}} \)

\[\times \quad 4. \quad 2\sqrt{3}, \frac{2}{\sqrt{3}} \]

Q.11

The range of the function \(f(x) = \log_3 \sqrt{4-x^2} \), is:

Ans

\[\times \quad 1. \quad (\ln 2, \infty) \]

\[\times \quad 2. \quad (-\infty, \infty) \]

\[\checkmark \quad 3. \quad (-\infty, \ln 2) \]

\[\times \quad 4. \quad (0, \infty) \]

Q.12

If \(3^{x+y} = 81 \) and \(81^{x-y} = 3 \), then what is the value of \(x \)?

Ans

\[\times \quad 1. \quad \frac{17}{16} \]

\[\checkmark \quad 2. \quad \frac{17}{8} \]

\[\times \quad 3. \quad \frac{17}{4} \]

\[\times \quad 4. \quad \frac{15}{4} \]

Q.13

The two circles \(C_1 \) and \(C_2 \) do not intersect and are placed as shown in the figure.

The radius of the circles \(C_1 \) and \(C_2 \) are 3 cm and 2 cm respectively and the distance between their centres is 6 cm. The direct common tangents meet at \(S_1 \). Find \(O_2S_1 \).

Ans

\[\times \quad 1. \quad 13 \text{ cm} \]

\[\times \quad 2. \quad 10 \text{ cm} \]
3. 11 cm
4. 12 cm

Q.14 Find the co-ordinates of the points of trisection of the straight line joining the points \(A(1, -2) \) and \(B(-3, 4) \)?

Ans

1. \(\left(\frac{5}{3}, -2 \right) \) & \(\left(\frac{1}{3}, 0 \right) \)
2. \(\left(-\frac{5}{3}, 2 \right) \) & \(\left(\frac{1}{3}, 0 \right) \)
3. \(\left(\frac{5}{3}, 2 \right) \) & \(\left(\frac{1}{3}, 0 \right) \)
4. \(\left(-\frac{5}{3}, 2 \right) \) & \(\left(-\frac{1}{3}, 0 \right) \)

Q.15 The range of \(ab \) if \(|a| \leq 1 \) and \(a + b = 1 \), \((a, b \in \mathbb{R}) \) is:

Ans

1. \(\left[\frac{1}{4}, 2 \right] \)
2. \([-2, \frac{1}{4}] \)
3. \([0, \frac{1}{4}] \)
4. \([0, 2] \)

Q.16 If the 4th term in the expansion of \((ax + \frac{1}{x})^n \) is \(\frac{5}{2} \), for all \(x \in \mathbb{R} \) then the values of \(a \) and \(n \) are:

Ans

1. \(\frac{1}{2}, 6 \)
2. \(\frac{1}{2}, 3 \)
3. \(1, 3 \)
4. cannot be found
In the given figure, O is the centre of the circle and if ∠OAC = 30°, the acute angle between AC and the tangent PQ at C is:

Ans

1. 60° ✓
2. 45°
3. 90°
4. 30°

Q.18 If the roots of the quadratic equation \(x^2 + px + q = 0\) are \(\tan 30°\) and \(\tan 15°\) respectively, then the value of \(2 + q - p\) is:

Ans

1. 1
2. 3 ✓
3. 0
4. 2

Q.19 Determine the ratio and the value of \(m\) in which the point \(P(m, 6)\) divides the join of \(A(-4, 3)\) and \(B(2, 8)\).

Ans

1. 3 : 4 and \(m = \frac{-2}{5}\) ✗
2. 3 : 4 and \(m = \frac{2}{5}\) ✓
3. 3 : 2 and \(m = \frac{-2}{5}\)
4. 3 : 2 and \(m = \frac{2}{5}\) ✗

Q.20 If \(A + B = \frac{\pi}{4}\), then \((\tan A + 1)(\tan B + 1)\) is equal to:

Ans

1. 2 ✓
2. -1
3. 1

Question ID: 96623116351
Status: Answered
Chosen Option: 1

Question ID: 96623116286
Status: Answered
Chosen Option: 2

Question ID: 96623116271
Status: Answered
Chosen Option: 3
Q.21 If the number 11^6 is divided by 7, the remainder is:

Ans

1. 1
2. 3
3. 4
4. 2

Q.22 If the standard deviation of the observation $-5,-4,-3,-2,-1,0,1,2,3,4,5$ is $\sqrt{10}$, then the standard deviation of the observation $15,16,17,18,19,20,21,22,23,24,25$ will be:

Ans

1. $\sqrt{10}$
2. $\sqrt{10} + 10$
3. $\sqrt{10} + 20$
4. None of the options

Q.23 If the distance between the points $(4, p)$ and $(1, 0)$ is 5, then the value of p is:

Ans

1. 4
2. 0
3. ± 4
4. -4

Q.24 Divide the polynomial $6x^2 + 13x^2 + x - 2$ by $2x + 1$, and find the quotient and remainder:

Ans

1. $Q = 3x^2 + 5x - 2$, $R = 1$
2. $Q = 3x^2 - 5x + 2$, $R = 0$
3. $Q = 3x^2 - 5x - 2$, $R = 0$
4. $Q = 3x^2 + 5x - 2$, $R = 0
Q.25 The pair of linear equations \(kx + 2y = 5 \) and \(3x + y = 1 \) has a unique solution if:

Ans

- \(\times 1. \) \(k = 0 \)
- \(\times 2. \) \(k = 6 \)
- \(\checkmark 3. \) \(k \neq 6 \)
- \(\times 4. \) \(k \) has any value

Q.26 In the following figure, \(ABCD \) is a parallelogram. \(AE \perp DC \) and \(CF \perp AD \). If \(AB = 16 \) cm, \(AE = 8 \) cm and \(CF = 10 \) cm, then \(AD \) is:

\[\text{Ans} \]

- \(\checkmark 1. \) 12.8 cm
- \(\times 2. \) 8 cm
- \(\times 3. \) 10 cm
- \(\times 4. \) 16 cm

Q.27 If the mean of the first \(n \) odd natural numbers is \(\frac{n^2}{81} \), then \(n = ? \)

Ans

- \(\times 1. \) 40
- \(\times 2. \) 27
- \(\times 3. \) 9
- \(\checkmark 4. \) 81

Q.28 If \(a = \sqrt{6} - \sqrt{5} \), \(B = \sqrt{6} + \sqrt{5} \), \(C = \sqrt{6} - \sqrt{5} \), \(D = \sqrt{6} + \sqrt{5} \), \(E = \sqrt{6} + \sqrt{5} \), then which of the following is a rational number?

Ans

- \(\checkmark 1. \) ABDE
- \(\times 2. \) AB
- \(\times 3. \) CD
- \(\times 4. \) ABCDE
Q.29
If a variable takes discrete values \(x + 4, x - \frac{7}{2}, x - \frac{3}{2}, x - 3, x - 2, x + \frac{1}{2}, x - \frac{5}{2}, x + 5, \ (x > 0)\) then the median is:

Ans

- \(\times \) 1. \(x - \frac{1}{2}\)
- \(\times \) 2. \(x - 2\)
- \(\checkmark \) 3. \(x - \frac{5}{4}\)
- \(\times \) 4. \(x + \frac{5}{4}\)

Question ID: 96623116306
Status: Answered
Chosen Option: 3

Q.30
If the lines given by \(3x + 2ky = 2\) and \(2x + 5y + 1 = 0\) are parallel, then the value of \(k\) is:

Ans

- \(\times \) 1. \(-\frac{5}{4}\)
- \(\times \) 2. \(\frac{3}{2}\)
- \(\checkmark \) 3. \(\frac{15}{4}\)
- \(\times \) 4. \(\frac{2}{5}\)

Question ID: 96623116327
Status: Answered
Chosen Option: 3

Q.31
If the ratio of the mode and the median of a distribution is \(6 : 5\), then the ratio of its mean and median is:

Ans

- \(\times \) 1. \(8 : 9\)
- \(\times \) 2. \(8 : 11\)
- \(\checkmark \) 3. \(9 : 10\)
- \(\times \) 4. \(9 : 7\)

Question ID: 96623116305
Status: Answered
Chosen Option: 3

Q.32
Let \(T_r\) be the \(r^{th}\) term of an AP, where the first term is \(a\) and common difference is \(d\). If for some positive integers \(m \neq n\), \(T_m = \frac{1}{n}\) and \(T_n = \frac{1}{m}\), then \(a - d\) equals:

Ans

- \(\checkmark \) 1. \(0\)
- \(\times \) 2. \(\frac{1}{mn}\)
- \(\times \) 3. \(\frac{1}{m} + \frac{1}{n}\)
- \(\times \) 4. \(1\)
Q.33 The value of a for which the sum of the squares of the roots of the equation $x^2 - (a - 2)x - a - 1 = 0$ assumes the least value is:

Ans

1. 2
2. 3
3. 0
4. 1

Q.34 The frustum of a right circular cone has the diameter of a base 10 cm, of top 6 cm and a height of 5 cm. Find the start height of the frustum:

Ans

1. $\sqrt{29}$
2. $4\sqrt{3}$
3. $3\sqrt{3}$
4. $\sqrt{13}$

Q.35 If the difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then:

Ans

1. $a + b + 4 = 0$
2. $a + b - 4 = 0$
3. $a - b + 4 = 0$
4. $a - b - 4 = 0$

Q.36 The volume of a cube is numerically equal to some of its edges. What is the total surface area in square units?

Ans

1. 72
2. 12
3. 36
4. 144

Q.37 If $u = a_1 x + b_1 y + c_1 = 0$, $v = a_2 x + b_2 y + c_2 = 0$ and \(\frac{a_1}{b_1} = \frac{b_2}{c_2} \), then $u + kv = 0$ represents:
Ans
1. a family of concurrent lines
2. \(u = 0\)
3. none of these
4. a family of parallel lines

Q.38
If the characteristic roots of \(\begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}\) are \(\lambda_1\) and \(\lambda_2\), the characteristic root of \(\begin{bmatrix} 5 & -7 \\ 2 & 3 \end{bmatrix}\) are:

Ans
1. \(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}\)
2. \(\lambda_1 + \lambda_2, \lambda_1 - \lambda_2\)
3. \(\lambda_1 + \lambda_2, |\lambda_1 - \lambda_2|\)
4. \(2\lambda_1, 2\lambda_2\)

Q.39
The points \((-4, 0), (4, 0), (0, 3)\) are the vertices of a:

Ans
1. right triangle
2. scalene triangle
3. isosceles triangle
4. equilateral triangle

Q.40
Which of the following rational numbers are terminating decimals?

Ans
1. \(\frac{17}{2^4 \times 5^2}\)
2. \(\frac{125}{3^3 \times 7^2}\)
3. \(\frac{68}{2^2 \times 5^2 \times 7^2}\)
4. \(\frac{25}{3^2 \times 2^3}\)
Q.41 The number \((4312)_5\) when expressed in base 10 is:

Ans

\[\begin{align*}
\times & \quad 562 \\
\times & \quad 592 \\
& \quad 612 \\
\checkmark & \quad 582
\end{align*}\]

Question ID: 96623116346
Status: Answered
Chosen Option: 4

Q.42 The equation of a straight line passing through the point of intersection of \(x - y + 1 = 0\) and \(3x + y - 5 = 0\) are perpendicular to one of them, is:

Ans

\[\begin{align*}
\times & \quad x - y + 3 = 0 \\
\checkmark & \quad x - 3y + 5 = 0 \\
\times & \quad x - 3y - 5 = 0 \\
\times & \quad x + y + 3 = 0
\end{align*}\]

Question ID: 96623116333
Status: Answered
Chosen Option: 2

Q.43 If \(X\) is a Poisson random variable with mean 3, then \(P(X-3<1)\) will be:

Ans

\[\begin{align*}
\checkmark & \quad \frac{9e^{-3}}{2} \\
\times & \quad \frac{e^{-3}}{2} \\
\times & \quad 3e^{-3} \\
\times & \quad \frac{99e^{-3}}{8}
\end{align*}\]

Question ID: 96623116260
Status: Answered
Chosen Option: 1

Q.44 Let \(R = (5\sqrt{5} + 11)^{2n+1}\) and \(f\) be the fractional part of \(R\), then \(Rf\) is equal to:

Ans

\[\begin{align*}
\checkmark & \quad 4^{2n+1} \\
\times & \quad 5^{2n+1} \\
\times & \quad 3^{2n+1} \\
\times & \quad 2^{2n+1}
\end{align*}\]

Question ID: 96623116345
Status: Answered
Chosen Option: 1
The value of \(p \) for which the polynomial \(x^2 + 4x^2 - px + 8 \) is exactly divisible by \((x - 2)\) is:

Ans

\[\begin{align*}
\times & \quad 1. \quad 3 \\
\checkmark & \quad 2. \quad 16 \\
\times & \quad 3. \quad 0 \\
\times & \quad 4. \quad 12 \\
\end{align*} \]

Q.46 The angular elevation of the tower OP at a point A due south of it is 60° and at a point B due west of A, the elevation is 30°. If AB = 3 m, then the height of the tower is:

Ans

\[\begin{align*}
\times & \quad 1. \quad 2\sqrt{6} \text{ m} \\
\times & \quad 2. \quad 2\sqrt{3} \text{ m} \\
\times & \quad 3. \quad \frac{3\sqrt{3}}{2} \text{ m} \\
\checkmark & \quad 4. \quad \frac{3\sqrt{6}}{4} \text{ m} \\
\end{align*} \]

Q.47 Let \(s = \{(-1,0,1),(2,1,4)\} \). The value of \(k \) for which the vectors \((3k + 2,3,10)\) belong to the linear span of \(s \) is:

Ans

\[\begin{align*}
\times & \quad 1. \quad 8 \\
\times & \quad 2. \quad -2 \\
\checkmark & \quad 3. \quad 2 \\
\times & \quad 4. \quad 3 \\
\end{align*} \]

Q.48 A sector of circle of radius 15 cm has the angle 120°. It is rolled up so that two bounding radii are joined together to form a cone. Find the height of the cone.

Ans

\[\begin{align*}
\times & \quad 1. \quad 5\sqrt{3} \\
\checkmark & \quad 2. \quad 10\sqrt{2} \\
\times & \quad 3. \quad 10\sqrt{3} \\
\times & \quad 4. \quad 7\sqrt{2} \\
\end{align*} \]

Q.49 The total number of divisors of 10500 except 1 and itself is:

Ans

\[\begin{align*}
\times & \quad 1. \quad 48 \\
\end{align*} \]
Q.50 If in a triangle ABC, \(\cos 3A + \cos 3B + \cos 3C = 1 \), then one angle must be equal to:

Ans

1. 60°
2. 120°
3. 30°
4. 90°

Q.51 If \(a, b, c \) are positive real numbers such that \(a + b + c = p \), then which of the following is true?

Ans

1. \((p-a)(p-b)(p-c) \geq 8abc\)
2. \((p-a)(p-b)(p-c) \geq \frac{8}{27}p^3\)
3. \(\frac{bc}{a} + \frac{ca}{b} + \frac{ab}{c} \geq p\)
4. none of these

Q.52 The solution to the recurrence equation \(T(2^k) = 3T(2^{k-1}) + 1 \), \(T(1) = 1 \) is:

Ans

1. \(2 \log_3 k\)
2. \(2^k\)
3. \(\frac{3^{k+1}-1}{2}\)
4. \(3\log_2 k\)

Q.53 A wire is in the shape of a circle of radius 21cm. It is bent to form a square. The side of the square is? \([\pi = \frac{22}{7}]\)

Ans

1. 66 cm
2. 33 cm
3. 22 cm
4. 44 cm

Q.54 The first and the last terms of an AP are 1 and 11. If the sum of its terms is 36, then the number of terms will be:

Ans

1. 5
2. 7
3. 6
4. 8

Q.55 On dividing \(x^3 - 3x^2 + x + 2 \) by a polynomial \(g(x) \), the quotient and remainder where \(x - 2 \) and \(-2x + 4 \) respectively. Find \(g(x) \):

Ans

1. \(x^2 - x - 1 \)
2. \(x^2 - x + 2 \)
3. \(x^2 + x - 2 \)
4. \(x^2 - x + 1 \)

Q.56 If the eigenvalues of a 3x3 real matrix of \(A \) are 1, 2, and -3, then:

Ans

1. \(A^{-1} = -\frac{1}{6}A^2 \)
2. \(A^{-1} = \frac{1}{6}(7I - A^2) \)
3. \(A^{-1} = \frac{1}{6}(7I - A^2) \)
4. \(A^{-1} = -\frac{1}{6}(7I + A^2) \)

Q.57 The point which divides the line segment joining the points \((7, -6)\) and \((3, 4)\) in the ratio 1:2 internally lies in the:

Ans

1. III quadrant
2. IV quadrant
3. II quadrant
4. I quadrant

Q.58 If a, b, c are distinct positive real numbers, then:

Ans

1. $a^2 + b^2 + c^2 > ab + bc + ca$ [Correct]
2. $a^2 + b^2 + c^2 \geq ab + bc + ca$ [Wrong]
3. $a^2 + b^2 + c^2 \leq ab + bc + ca$ [Wrong]
4. $a^2 + b^2 + c^2 < ab + bc + ca$ [Wrong]

Q.59 The value of k for which $kx + 3y - k + 3 = 0$ and $12x + ky = k$ have infinite solution is:

Ans

1. -6 [Wrong]
2. 0 [Wrong]
3. 6 [Correct]
4. 1 [Wrong]

Q.60 Consider the real vector space \mathbb{R}^2. The subspace $\{(x, y) \in \mathbb{R}^2 : y = x\}$ of \mathbb{R}^2 is generated by which of the following?

Ans

1. $\{(1,0), (0,1)\}$ [Correct]
2. $\{(1,0), (1,0)\}$ [Wrong]
3. $\{(0,1), (0,0,1)\}$ [Wrong]
4. $\{(1,0), (0,1)\}$ [Wrong]

Q.61 If $x + y = 7$ and $3x + y = 13$, then what is the value of $4x^2 + y^2 + 4xy$?

Ans

1. 85 [Wrong]
2. 100 [Correct]
3. 75 [Wrong]
4. 91 [Wrong]
Q.62 Which of the statements given below is Euclid’s Postulate 4?

A. A circle can be drawn with any centre and any radius.
B. All right angles are equal to one another.
C. A straight line may be drawn from any one point to any other point.
D. A terminated line (i.e. a line segment) can be produced indefinitely on either side.

Ans
1. D
2. A
3. B
4. C

Q.63 The radius of the base of a right circular cone is doubled. To keep the volume fixed, the height of the cone will be:

Ans
1. $\frac{1}{\sqrt{2}}$ times of the original height
2. one third of the original height
3. one fourth of the original height
4. half of the original height

Q.64 The value of k such that $3x^2 - 11xy + 10y^2 - 7x + 13y + k = 0$ may represent a pair of straight lines is:

Ans
1. 6
2. 4
3. 8
4. 3

Q.65 The quadratic equations $x^2 - 6x + a - 0$ and $x^2 - cx + 6 = 0$ have one root in common. The other roots of the first and second equations are integers in the ratio 4 : 3. The common root is:

Ans
1. 4
2. 1
3. 2
4. 3
Q.66 Let \(A \) be a 3x3 matrix, whose characteristic roots are 3, 2, -1. If \(B = A^2 - A \), then \(|B|\) is:

Ans

\[\begin{align*}
 &\times 1. \ -2 \\
 &\times 2. \ -12 \\
 &\checkmark 3. \ 24 \\
 &\times 4. \ 12
\end{align*} \]

Q.67 If \(f(2a - x) = f(x) \) and \(\int_{0}^{a} f(x) \, dx = \lambda \), then \(\int_{0}^{2a} f(x) \, dx \) is:

Ans

\[\begin{align*}
 &\checkmark 1. \ 2\lambda \\
 &\times 2. \ 0 \\
 &\times 3. \ 3\lambda \\
 &\times 4. \ \lambda
\end{align*} \]

Q.68 If \(a, b \) are positive real numbers such that \(ab = 1 \), then the least value of the expression \((1 + a)(1 + b) \) is:

Ans

\[\begin{align*}
 &\times 1. \ 6 \\
 &\checkmark 2. \ 4 \\
 &\checkmark 3. \ 2 \\
 &\times 4. \ 3
\end{align*} \]

Q.69 Consider the following distribution:

<table>
<thead>
<tr>
<th>Marks obtained</th>
<th>No. of students</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than or equal to 0</td>
<td>63</td>
</tr>
<tr>
<td>More than or equal to 10</td>
<td>58</td>
</tr>
<tr>
<td>More than or equal to 20</td>
<td>55</td>
</tr>
<tr>
<td>More than or equal to 30</td>
<td>51</td>
</tr>
<tr>
<td>More than or equal to 40</td>
<td>48</td>
</tr>
<tr>
<td>More than or equal to 50</td>
<td>42</td>
</tr>
</tbody>
</table>

The frequency of the class \((30 - 40)\) is:

Ans

\[\begin{align*}
 &\times 1. \ 4 \\
 &\checkmark 2. \ 3 \\
 &\times 3. \ 48 \\
 &\times 4. \ 51
\end{align*} \]
Q.70

The difference of 5.76 and 2.3 is:

Ans

1. 3.73
2. 2.54
3. 3.43
4. 3.46

Q.71

The value of \(\lim_{x \to 2\sqrt{2}-\sqrt{x}} \frac{5}{x} \), is:

Ans

1. does not exist
2. 10\(\sqrt{2}\)
3. \(\infty\)
4. \(-\infty\)

Q.72

If \(PM\) is the perpendicular from \(P(2, 3)\) on the line \(x + y = 3\), then the co-ordinates of \(M\), are:

Ans

1. \((-1, 4)\)
2. \((1, 2)\)
3. \((2, 1)\)
4. \((4, -1)\)

Q.73

The numerical value of \(\sin \frac{\pi}{18} \cdot \sin \frac{5\pi}{18} \cdot \sin \frac{7\pi}{18}\) is equal to:

Ans

1. \(\frac{1}{2}\)
2. 1
3. \(\frac{1}{8}\)
4. \(\frac{1}{4}\)
Q.74 If one of the zeros of the quadratic polynomial \((k - 1)x^2 + kx + 1\) is \(-3\), then the value of \(k\) is:

\[
\begin{align*}
\text{Ans} & \quad \times \quad \frac{-2}{3} \\
& \quad \checkmark \quad \frac{4}{3} \\
& \quad \times \quad \frac{-4}{3} \\
& \quad \times \quad \frac{2}{3}
\end{align*}
\]

Q.75 If the sum of \(n\) terms of an AP is \(3n^2 + 5n\), then which of its terms is 164?

\[
\begin{align*}
\text{Ans} & \quad \times \quad 29^{th} \\
& \quad \times \quad 28^{th} \\
& \quad \checkmark \quad 27^{th} \\
& \quad \times \quad 26^{th}
\end{align*}
\]

Q.76 Three concurrent straight lines are drawn from the angular points of \(A, B,\) and \(C\) of the triangle \(ABC\) to meet the opposite sides at \(D, E,\) and \(F\) respectively as shown in the figure. It is given that \(AF : FB = 2 : 3\) and \(BD : DC = 3 : 5\). Find \(AE : EC\).

\[
\begin{align*}
\text{Ans} & \quad \times \quad 5 : 2 \\
& \quad \times \quad 4 : 5 \\
& \quad \times \quad 3 : 4 \\
& \quad \checkmark \quad 2 : 5
\end{align*}
\]

Q.77 If \(\int \frac{\sin^4 x}{\cos^2 x} \, dx = a \tan^7 x + b \tan^5 x + c\), then:

\[
\text{Ans}
\]
1. $7a = 5b$
2. $5a + 7b = 0$
3. $7a + 5b = 0$
4. $5a = 7b$

Q.78 If the system of equations

$x - 2y - 3z = 1,$
$(p + 2)z = 3.$

$(2p + 1)y + z = 2$ is inconsistent, then what will the value of p be?

Ans

1. $-\frac{1}{2}$
2. 0
3. -2
4. 2

Q.79 The area of a triangle with vertices $A(3, 0)$, $B(7, 0)$ and $C(8, 4)$ is:

Ans

1. 14
2. 8
3. 28
4. 6

Q.80 The y-intercept of the line passing through $(2, 2)$ and perpendicular to the lines $3x + y = 3$ is:

Ans

1. $\frac{4}{3}$
2. $\frac{2}{3}$
3. 1
4. $\frac{1}{3}$
Q.81

The value of the integral $\int a^{cx+d} \, dx = ?$

Ans

1. $\frac{1}{c} \frac{a^{cx+d}}{\log_e a} + c$

2. $\frac{1}{(cx+d)} \frac{a^{cx+d}}{\log_e a} + c$

3. $\frac{a^{cx+d+1}}{(cx+d+1)} + c$

4. $\frac{a^{cx+d}}{\log_e a} + c$

Q.82

Let X be a normal random variable with mean zero and variance 9. If $a = P(X \geq 3)$, then $P(X \leq 3)$ equals:

Ans

1. a

2. $2a$

3. $1-2a$

4. $1-a$

Q.83

If the foot of the perpendicular from the origin to a straight line is at the point ($3,-4$), then the equation of the line is:

Ans

1. $4x - 3y + 25 = 0$

2. $4x + 3y - 25 = 0$

3. $3x - 4y = 25$

4. $3x - 4y + 25 = 0$

Q.84

The solution of the system of congruence, $x = 3 (mod \ 5)$, $x = 5 (mod \ 7)$ is:

Ans

1. $x = 29 (mod \ 35)$

2. $x = 27 (mod \ 35)$

3. $x = 23 (mod \ 35)$

4. $x = 33 (mod \ 35)$
Q.85 If \(A \) and \(B \) denote the coefficient of \(x^n \) in the binomial expansion of \((1 + x)^{2n}\) and \((1 + x)^{2n-1}\) respectively, then:

Ans

\[\begin{array}{ll}
1. & 2A = B \\
2. & A = 2B \\
3. & A = B \\
4. & \text{none of these} \\
\end{array} \]

Q.86 Given that \(\tan A \) and \(\tan B \) are the roots of the equation \(ax^2 - ax + b = 0 \). The value of \(\sin^2(A + B) \), is:

Ans

\[\begin{array}{ll}
1. & \frac{a^2}{(a + b)^2} \\
2. & \frac{a^2}{b^2 + (1 - a)^2} \\
3. & \frac{a^2}{a^2 + (1 - b)^2} \\
4. & \frac{a^2}{a^2 + b^2} \\
\end{array} \]

Q.87 The radii of a cylinder and a cone are in the ratio of 3 : 4 and their heights are in the ratio of 2 : 3. The ratio of their volumes is:

Ans

\[\begin{array}{ll}
1. & 8 : 9 \\
2. & 4 : 3 \\
3. & 3 : 8 \\
4. & 3 : 4 \\
\end{array} \]

Q.88 Select the correct value of \(\frac{1}{\sqrt{9} + \sqrt{10}} + \frac{1}{\sqrt{10} - \sqrt{11}} + \frac{1}{\sqrt{11} + \sqrt{12}} + \ldots \) upto 91 terms from the following options:

Ans

\[\begin{array}{ll}
1. & 7 \\
2. & 8 \\
3. & 6 \\
4. & 9 \\
\end{array} \]
Q.89 Let \(\alpha \) and \(\beta \) be the roots of the equation \(px^2 + qx + r = 0, \ p \neq 0 \). If \((p,q,r)\) are in A.P. and \(\frac{1}{\alpha} + \frac{1}{\beta} = 4 \), then the value of \(|\alpha - \beta|\) is:

Ans

1. \(\frac{2\sqrt{17}}{9} \)
2. \(\frac{2\sqrt{13}}{9} \)
3. \(\frac{\sqrt{34}}{9} \)
4. \(\frac{\sqrt{61}}{9} \)

Q.90 The first, second and last term of an AP are \(a, b, 2a \) respectively, then its sum is:

Ans

1. \(\frac{3ab}{2(b-a)} \)
2. \(\frac{3ab}{b-a} \)
3. \(\frac{ab}{b-a} \)
4. \(\frac{ab}{2(b-a)} \)

Q.91 If an angle \(\alpha \) is divided into two parts \(A \) and \(B \) such that \(A - B = x \) and \(\tan A : \tan B = k : 1 \), then the value of \(\sin x \) is:

Ans

1. \(\frac{k+1}{k-1} \sin \alpha \)
2. \(\frac{k-1}{k+1} \sin \alpha \)
3. None of these
4. \(\frac{k}{k+1} \sin \alpha \)
If the mode of the following frequency distribution is 22 and $10 > y > x$, then $y =

<table>
<thead>
<tr>
<th>Class interval</th>
<th>0-10</th>
<th>10-20</th>
<th>20-30</th>
<th>30-40</th>
<th>40-50</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>x</td>
<td>y</td>
<td>30</td>
</tr>
</tbody>
</table>

Ans

1. 3
2. 4
3. 5
4. 2

Q.93 In the given figure (not to scale) $AM:MC = 3:4$, $BP:PM = 3:2$, and $BN = 12cm$. MR is parallel to CN. Find AN?

Ans

1. 10
2. 13
3. 15
4. 14

Q.94 The pdf of a random variable X is given by $f(x) = \begin{cases} kx(1-x), & 0 < x < 10, \\ 0, & otherwise \end{cases}$ where k is an appropriate positive constant. The value of $P(X < \frac{1}{2})$ is:

Ans

1. $\frac{1}{3}$
2. $\frac{1}{81}$
3. $\frac{2}{27}$
4. $\frac{1}{9}$

Q.95 If the roots of the quadratic equation $x^2 - 4x - \log_2 \alpha = 0$ are real, then the least value of α is:

Ans

1. 81
Q.96
Which of the following set of vectors in \(\mathbb{R}^3 \) is linearly independent \(\mathbb{R}^3 \)?

\begin{align*}
\checkmark \quad & 1 \quad \frac{1}{81} \\
\times \quad & 2 \quad 64 \\
\times \quad & 3 \quad \frac{1}{64}
\end{align*}

Ans

1. \([(1,2,5), (1,-2,1), (2,1,4)]
2. \([(1,-2,3), (-2,4,1), (-4,8,9)]
3. \([(2,-1,3), (-4,2,-6), (8,0,1)]
4. \([(5,2,-3), (3,0,4), (-3,0,-4)]

Q.97
The value of \(\frac{(1.5)^2 + (4.7)^2 + (3.8)^2 - 3 \times 1.5 \times 4.7 \times 3.8}{(1.5)^2 + (4.7)^2 + (3.8)^2 - (1.5 \times 4.7) - (4.7 \times 3.8) - (1.5 \times 3.8)} \) is:

\begin{align*}
\times \quad & 1 \quad 11 \\
\times \quad & 2 \quad 8 \\
\checkmark \quad & 3 \quad 10 \\
\times \quad & 4 \quad 9
\end{align*}

Q.98
If \(y = x^{2x} \), then \(\frac{dy}{dx} = ? \)

\begin{align*}
\times \quad & 1 \quad 2x^{2x} \ln x \\
\times \quad & 2 \quad 2x^{2x} \\
\checkmark \quad & 3 \quad 2x^{2x}(\ln x + 1) \\
\times \quad & 4 \quad x^{2x}(\ln x + 2)
\end{align*}

Q.99
Given below are the steps involved in finding the HCF of 59 and 42 by using Euclid’s division algorithm. Arrange them in sequential order from first to last.

(A) \(42 = 17 \times 2 + 8\)
(B) \(59 = 42 \times 1 + 17\)
(C) \(17 = 8 \times 2 + 1\)
(D) \(1 \times 8 + 0\)

Answer: \(\boxed{1. \text{ BCDA}}\)
\(\boxed{2. \text{ BACD}}\)
\(\boxed{3. \text{ CDAB}}\)
\(\boxed{4. \text{ ABCD}}\)

Q.100 A line passes through the point of intersection of the lines \(3x + y + 1 = 0\), and \(2x - y + 3 = 0\) and makes equal intercepts with the axis. The equation of the line is:

Answer: \(\boxed{1. 5x + 5y + 3 = 0}\)
\(\boxed{2. x + 5y - 3 = 0}\)
\(\boxed{3. 5x - y - 3 = 0}\)
\(\boxed{4. 5x + 5y - 3 = 0}\)

Section: General Hindi

Q.1 किया के अन्तर्गत आता है:

Answer: \(\boxed{1. कर्मा}\)
\(\boxed{2. किया}\)
\(\boxed{3. कर्म}\)
\(\boxed{4. कर्म व किया}\)

Q.2 निम्नलिखित में से सही विलोम युग्म नहीं हैं:

Answer: \(\boxed{1. मनुष्य - पुरुष}\)
\(\boxed{2. निर्दय - सदय}\)
\(\boxed{3. मधुर - कटु}\)
\(\boxed{4. यादव - जापक}\)
<table>
<thead>
<tr>
<th>Q.3 'केतु' का अर्थ है:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ans</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question ID</th>
<th>96623116358</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Answered</td>
</tr>
<tr>
<td>Chosen Option</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q.4 'लहर' के पर्यायवाची नहीं हैं:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ans</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question ID</th>
<th>96623116368</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Answered</td>
</tr>
<tr>
<td>Chosen Option</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q.5 'अपना सा मुँह लेकर रह जाना' मुहावरे का अर्थ है:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ans</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question ID</th>
<th>96623116361</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Answered</td>
</tr>
<tr>
<td>Chosen Option</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q.6 'मेरी माँ खाना बना रही है।' वाक्य में कर्ता का विस्तार है।</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ans</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question ID</th>
<th>96623116367</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Answered</td>
</tr>
<tr>
<td>Chosen Option</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q.7 'शरदी' किसका पर्याय है?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ans</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question ID</th>
<th>96623116369</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Answered</td>
</tr>
<tr>
<td>Chosen Option</td>
<td>4</td>
</tr>
</tbody>
</table>
Q.8 'तबेले की बला बनदर के सिर' लोकोक्ति का सही अर्थ है:
Ans
1. केवल बाहरी दिखावा
 ✗
2. जैसा वाहा, जैसा हो गया
 ✗
3. अवसर चुकने पर पछताना व्यर्थ
 ✗
4. अपराध करे कोई, पकड़ा जाए कोई और
 ✔

Question ID: 96623116362
Status: Answered
Chosen Option: 4

Q.9 तत्क्षण प्रत्यय का उदाहरण नहीं है:
Ans
1. अचार्ड
 ✗
2. बुराई
 ✗
3. भलाई
 ✗
4. सिलाई
 ✔

Question ID: 96623116364
Status: Answered
Chosen Option: 4

Q.10 कौनसा शब्द 'अन्ते' उपसर्ग से बना हुआ नहीं है?
Ans
1. अनादर
 ✗
2. अनभास
 ✗
3. अनपठ
 ✔
4. अनादि
 ✔

Question ID: 96623116363
Status: Answered
Chosen Option: 2

Q.11 'घन' का अर्थ नहीं है:
Ans
1. घर
 ✔
2. बदल
 ✗
3. घना
 ✗
4. बड़ा हथौड़ा
 ✗

Question ID: 96623116360
Status: Answered
Chosen Option: 1

Q.12 कौनसा विलोम युग्म सही है?
Ans
1. कवि - कवयीी
 ✗
2. योगी - रोगी
 ✗
3. विद्वान - विद्वृती
 ✗
4. अथ - इति
 ✔
Q.13 वृद्धि संधि का उदाहरण नहीं हैं:

Ans
- 1. मलेक्क
- 2. विद्येक्क
- 3. एक्रेक
- 4. शिशेक्क

Q.14 'खाग' का अर्थ नहीं है:

Ans
- 1. बाण
- 2. आकाश
- 3. पक्षी
- 4. तारा

Q.15 'तालाब' का पर्यायवाची नहीं है:

Ans
- 1. सर
- 2. तड़ण
- 3. तड़क
- 4. पुकर

Q.1 Select the alternative that will improve the underlined part of the sentence. In case there is no improvement, select 'No improvement'

I told the porter to carry the baggages in my room.

Ans
- 1. No Improvement
- 2. baggage to my room.
- 3. baggage in my room.
- 4. baggages to my room.

Q.2 Select the most appropriate option to fill in the blank:
It is his _____ to drink water first thing in the morning.

Ans
1. tendency
2. ritual
3. habit
4. custom

Q.3 Select the wrongly spelt word:

Ans
1. receive
2. believe
3. perceive
4. acheive

Q.4 Select the correct sentence structure:

Ans
1. The elder man at the shopping mall you met who is my brother.
2. The man is my elder brother who at the shopping mall met you.
3. The man who met you at the shopping mall is my elder brother.
4. My elder brother who met you at the shopping mall is a man.

Q.5 Select the most appropriate indirect speech of the given sentence:

Mother says, "Good deeds always pay off."

Ans
1. Mother said that good deeds always paid off.
2. Mother is saying good deeds always paying off.
3. Mother says that good deeds always pay off.
4. Mother said that good deeds always pay off.

Q.6 Select the most appropriate synonym of the given word:

ERADICATE

Ans
1. emulate
2. uproot
3. imitate
4. fabricate
Q.7 Select the correct sentence structure:
Ans
1. No sooner does the light turn red but the traffic stops.
 ✗ 2. No sooner did the light turn red than the traffic stopped.
 ✗ 3. No sooner had the light turned red when the traffic stopped.
 ✗ 4. No sooner was the light turning red when the traffic stopped.

Q.8 Fill in the blank with the most appropriate antonym of the underlined word in the sentence:
Her rosy cheeks turned ______ during the illness.
Ans
1. radiant
 ✗ 2. pallid
 ✗ 3. flushed
 ✗ 4. sanguine

Q.9 Identify the segment in the sentence which contains the grammatical error:
He is one of those men who is always criticizing others.
Ans
1. He is one
 ✗ 2. who is always
 ✗ 3. criticizing others.
 ✗ 4. of those men

Q.10 Select the correct sentence structure:
Ans
1. The liaison between the government and the people acts as a newspaper.
 ✗ 2. The government between the newspaper and the people acts as a liaison.
 ✗ 3. The people as a liaison act between the government and the newspaper.
 ✗ 4. The newspaper acts as a liaison between the government and the people.

Q.11 Fill in the blank with the most appropriate antonym of the underlined word in the sentence:
The twin sisters are so different when it comes to conversation. One is loquacious while the other is ______.

Ans
1. effusive
2. taciturn
3. garrulous
4. vivacious

Q.12 Select the most appropriate meaning of the given idiom:

to go bananas

Ans
1. to go on a picnic
2. to go shopping
3. to go places
4. to go crazy

Q.13 Select the most appropriate synonym of the given word:

AMIABLE

Ans
1. laughable
2. suitable
3. tolerable
4. lovable

Q.14 Select the correct active form of the given sentence:

Several trees were uprooted by the fierce storm.

Ans
1. The fierce storm was uprooting several trees.
2. The fierce storm has been uprooting several trees.
3. The fierce storm uprooted several trees.
4. Several trees uproot the fierce storm.

Q.15 Select the most appropriate option to fill in the blank:

You weren’t there at the party yesterday, ______?

Ans
1. were you
2. is it