Adda 247 Publications

BIDKS

$20+$ IBPS PO PRELIMS 2018 MOCK PAPER BASED ON LLTEST PATTERN
(EnglishMelium)

Visit: publications.adda247.com \& store.adda247.com
For any information, mail us at publications@adda247.com

Solutions

S1. Ans.(a)

Sol. $+9^{2},+11^{2},+13^{2},+15^{2} \ldots \ldots$.
$\therefore ?=1157+289=1446$

S2. Ans.(d)
Sol. $-9^{2},-7^{2},-5^{2}$ \qquad
$\therefore ?=1394-25=1369$

S3. Ans. (c)

Sol. $+4^{2},+5^{2},+6^{2},+7^{2} \ldots \ldots .$.
$\therefore ?=134+64=198$
S4. Ans.(b)
Sol.

S5. Ans.(b)
Sol. -103, -103, -103 \qquad
\therefore ? $=1337-103=1234$

S6. Ans.(a)

Sol. Required Probability

$=\left(\frac{3 C_{1}}{{ }^{C_{1}}}+\frac{4 C_{1}}{7 C_{1}}\right) \times \frac{1}{2}=\frac{1}{2}$

S7. Ans.(a)

Sol. Favorable cases $=(4,4),(4,6),(6,4)$ or $(6,6)$
Required probability $=\frac{4}{36}=\frac{1}{9}$

S8. Ans.(b)

Sol. Possible number of ways = Two black and one red or one black and two red.
$={ }^{26} \mathrm{C}_{2} \times{ }^{26} \mathrm{C}_{1}+{ }^{26} \mathrm{C}_{1} \times{ }^{26} \mathrm{C}_{2}$
$=2 \times 13 \times 25 \times 26$
Total number of ways $={ }^{52} \mathrm{C} 3$
$=\frac{52 \times 51 \times 50}{1 \times 2 \times 3}$
$=26 \times 17 \times 50$
Probability of the event
$=\frac{2 \times 13 \times 25 \times 26}{26 \times 17 \times 50}=\frac{13}{17}$

S9. Ans.(d)

Sol. At least one girl = Total ways - ways of no girl
$={ }^{10} c_{4}-{ }^{4} c_{4}$
$=\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2}-1$
$=210-1=209$

S10. Ans.(a)

Sol. For a number to be even, last digit of that number must be an even digit.
\therefore Required ways $=\underline{4} \times 4 \times \underline{2}=32$

S11. Ans.(e)

Sol. Required fund $=(38-12) \%$ of $16,00,00,000$
= Rs. 4,16,00,000

S12. Ans.(a)

Sol. Required remaining amount
$=42 \%$ of $16 \mathrm{cr}-25 \%$ of 16 cr
$=17 \%$ of 16 cr
$=2.72$ crore

S13. Ans.(a)

Sol. Required percentage $=\frac{16}{38} \times 100=42 \frac{2}{19} \%$

S14. Ans.(c)

Sol. Required amount for payment $=35 \%$ of 16 crore
$=\frac{35 \times 16}{100}=$ Rs. 5.6 crore

S15. Ans.(c)

Sol. Fund acquired from ministry of home affairs $=42 \%$ of 16 crore
$=\frac{42 \times 16}{100}=$ Rs. 6.72 crore

S16. Ans.(a)

Sol. Quantity I. Hole can empty the tank in 8 hours
Due to an inlet it takes 12 hours.
LCM of 8 and $12=24$
Efficiency of inlet pipe $=\frac{24}{8}-\frac{24}{12}=1$
So, inlet pipe can full it in $\frac{24}{1}=24$ hour
Water in tank $=24 \times 60 \times 6=8640$ litre

Quantity II. CI $=P\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{t}}-\mathrm{P}$
$2448=\mathrm{P}\left[\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{t}}-1\right]$
$2448=\mathrm{P}\left[\left(1+\frac{4}{100}\right)^{2}-1\right]$
$2448=\mathrm{P}\left[\frac{676}{625}-1\right]$
$2448=\mathrm{P}\left[\frac{51}{625}\right]$
$\therefore \mathrm{P}=\frac{2448 \times 625}{51}=30000$
$\therefore \mathrm{SI}=\frac{30000 \times 4 \times 2}{100}=$ Rs. 2400
From here, QI > QII

S17. Ans.(b)

Sol. Quantity I. Let present age of Abhishek and Rohit is x and y respectively.
ATQ,
$\frac{x-4}{y-4}=\frac{4}{5}$
$5 \mathrm{x}-4 \mathrm{y}=4$ \qquad
$\frac{x+2}{y+2}=\frac{5}{6}$
$6 x-5 y=-2$ \qquad
Solving (I) and (II)
$X=28, y=34$
So, average age of Abhishek and Rohit $=\frac{28+34}{2}=31$ years
Quantity II. Let initial quantity of milk $=3 x$
Let initial quantity of water $=x$
ATQ,
$\frac{3 x-15+15}{x-5}=\frac{4}{1}$
$\frac{3 x}{x-5}=\frac{4}{1}$
$3 \mathrm{x}=4 \mathrm{x}-20$
$\mathrm{x}=20$
So, initial quantity of mixture $=(3 x+x)$
$=4 \times 20$
$=80 \mathrm{~L}$
\therefore Quantity I < Quantity II

S18. Ans. (b)

Sol. Total quantity of acid $=\frac{6}{7}+\frac{5}{7}+\frac{3}{4}=\frac{65}{28}$
\& total quantity of water
$=\frac{1}{7}+\frac{2}{7}+\frac{1}{4}=\frac{19}{28}$
\therefore Required ratio $=65: 19$

S19. Ans.(c)

Sol. Initial quantity of acid $=\frac{200}{100} \times 15=30 \ell$
Let x litre of second solution is added.
$\therefore \frac{30+0.3 x}{200+x}>\frac{20}{100} \quad \& \quad \frac{30+0.3 x}{200+x}<\frac{25}{100}$
$\Rightarrow \frac{30+0.3 x}{200+x}>\frac{1}{5} \quad \& \quad \frac{30+0.3 x}{200+x}<\frac{1}{4}$
$\Rightarrow 200+\mathrm{x}<150+1.5 \mathrm{x}$ \& $200+\mathrm{x}>120+1.2 \mathrm{x}$
$\Rightarrow x>100 \& x<400$
$\Rightarrow 100 \ell<x<400 \ell$

S20. Ans.(c)

Sol. Area of road is $=16 \times 1.5+24 \times 1.5-1.5 \times 1.5$
$=24+36-2.25$
$=57.75$
So, total cost of road making $=57.75 \times 310$ Rs.
= Rs. 17902.5

Solutions (21-25):

Total students $=150$
Boys $=70$, Girls $=80$

Discipline	Boys (70)	Girls (80)
Marketing	40% of $70=28$	50% of $80=40$
HR	30% of $70=21$	30% of $80=24$
Finance	30% of $70=21$	20% of $80=16$
HR +Marketing	7	9
HR+ Finance	6	7
Marketing+ Finance	5	8
Marketing + Finance +HR	2	3

Boys

S21. Ans.(a)

Sol. Students those are enrolled in all three disciplines $=2+3=5$
\therefore Required percentage $=\frac{5}{150} \times 100=3.3 \%$

S22 Ans.(b)

Sol. The ratio of boys to girls only in marketing disciplines = 18:26=9:13

S23. Ans.(c)

Sol. The ratio of the number of boys in marketing and finance both and girls only in finance $=5: 4$

S24. Ans.(d)

Sol. Boys in marketing discipline $=28$
Girls in HR discipline $=24$
Required percentage $=\frac{28-24}{24} \times 100 \% \Rightarrow \frac{4}{24} \times 100 \%=16 \frac{2}{3} \%$

S25. Ans.(a)

Sol. The ratio of boys to girls enrolled only in HR discipline is $=10: 11$

S26. Ans.(b)

Sol. $23.8+13.2=37$

S27. Ans.(a)

Sol. $81.2+52.2=133.4$

S28. Ans.(a)

Sol. $26+16=42$

S29. Ans.(c)

Sol. $149834-85973=63861$

S30. Ans.(a)

Sol. $66.6+99.9=166.5$

S31. Ans.(a)

Sol. $p+q+r+s=64$
$p+3=q-3=3 r=\frac{s}{3}=K$ (say)
$\therefore \mathrm{p}=\mathrm{K}-3, \mathrm{q}=\mathrm{K}+3, \mathrm{r}=\frac{\mathrm{K}}{3}, \mathrm{~s}=3 \mathrm{~K}$
\therefore from (i)
$(\mathrm{K}-3)+(\mathrm{K}+3)+\left(\frac{\mathrm{K}}{3}\right)+(3 \mathrm{~K})=64$
$\Rightarrow \mathrm{K}=12$
$\therefore \mathrm{p}=9, \mathrm{q}=15, \mathrm{r}=4, \mathrm{~s}=36$
So, required difference $=36-4=32$

Sol. Total investment $=(13+23+8) \%$ of monthly salary = 44\% of salary
Now, $13 \%=8554$
$\therefore 44 \%=\frac{8554}{13} \times 44=$ Rs. 28952

S33. Ans.(c)

Sol. Let the highest score be x
$\therefore 40 \times 50=38 \times 48+x+x-172$
$\Rightarrow 2000=1824+2 x-172$
$\Rightarrow x=174$ runs.

S34. Ans.(c)

Sol.
$\frac{5 x-16 \times \frac{5}{8}}{3 x-16 \times \frac{3}{8}+16}=\frac{3}{5}$
$\Rightarrow \frac{5 x-10}{3 x+10}=\frac{3}{5}$
$\Rightarrow 25 x-50=9 x+30$
$\Rightarrow x=5$
\therefore volume of vessel $=(5+3) \times 5=40 \ell$

S35. Ans.(c)

Sol. Let x ltr. of acid drawn initially,
$\therefore\left(1-\frac{x}{54}\right)^{2}=\frac{24}{54}$
$\Rightarrow 2916+x^{2}-108 x=24 \times 54$
$\Rightarrow x^{2}-108 x+1620=0$
$\Rightarrow x=18 \ell$ (Neglecting $x=90$ because total capacity is 54ℓ)

S36. Ans.(e)

Sol. $\frac{460 \times 850}{100}+\frac{270 \times 6280}{100} \times 6284-1486$
$=3910-1486+16956 \approx 19380$

S37. Ans.(e)

Sol. $28=(3.5+?) 2$
$\Rightarrow 14=3.5+$?
\Rightarrow ? $=14-3.5=10.5$

S38. Ans.(c)

Sol. $\approx 4 \times 24-31$
$\Rightarrow 96-31=65$

S39. Ans.(d)
Sol. $(1702 \div 68) \times 136.05=50 \times$?
$\approx \frac{1702}{68} \times 136=50 \times ?$
$\therefore ?=\frac{3400}{50}=68$

S40. Ans.(d)

Sol.

$\approx 70 \% \times 1400-14 \% \times 1300$
$\approx 980-182=798$
≈ 800

S41. Ans.(c)

Sol. Required average
$=\frac{1}{5}(0.4 \times 240+0.4 \times 260+0.4 \times 270+0.45 \times 260+0.5 \times 260) \times 1000$
$=\frac{1}{5} \times 555 \times 1000=111000$

S42. Ans.(b)

Sol. Capacity in $2010=(170+28+240) \times 1000=438000$
Total utilization in $2014=(0.6 \times 225+0.55 \times 40+0.5 \times 260) \times 1000=287000$
\therefore Required percentage $=\frac{151000}{287000} \times 100 \approx 52.6 \%$

S43. Ans.(e)

Sol. Production of A $=(170+200) \times 1000=370000$
Utilization of $C=(0.4 \times 270+0.45 \times 260+0.5 \times 260) \times 1000=355000$
\therefore Required difference $=15000$

S44. Ans.(b)

Sol. Total unutilized in $2013=(0.4 \times 210+0.5 \times 40+0.55 \times 260) \times 1000=247000$
\therefore unutilized at cost $=\frac{20}{100} \times 247000=49,400$

S45. Ans.(e)

Sol. Required ratio $=\frac{200+260}{(0.6 \times 210)-(0.45 \times 260)}=\frac{460}{9}$

S46. Ans.(a)

Sol. Let the rate of interest be R percent per annum.
$\therefore \frac{400 \times 2 \times R}{100}+\frac{550 \times 4 \times R}{100}+\frac{1200 \times 6 \times R}{100}=1020$
$\Rightarrow 8 \mathrm{R}+22 \mathrm{R}+72 \mathrm{R}=1020$
$\Rightarrow 102 \mathrm{R}=1020$
$\Rightarrow \mathrm{R}=\frac{1020}{102}=10 \%$

S47. Ans.(a)

Sol. Let Rs. P be lent at 12% then Rs. $(12,000-\mathrm{P})$ is lent at 16%, then
$\therefore \frac{\mathrm{P} \times 3 \times 12}{100}=\frac{(12000-\mathrm{P}) \times 9 \times 16}{200}$
$\Rightarrow \frac{P}{12000-P}=\frac{9 \times 16 \times 100}{3 \times 12 \times 200}=\frac{2}{1}=2: 1$

S48. Ans.(c)

Sol. 110\% of CP - 90% of CP $=80$
20% of CP = 80
$\mathrm{CP}=\frac{80}{20} \times 100=$ Rs. 400

S49. Ans.(c)

Sol. SP after first discount $=\frac{1600 \times 90}{100}=$ Rs. 1440
\therefore Second discount $=1440-1224=$ Rs. 216
$\therefore \frac{1440 \times x}{100}=216$
$\therefore x=\frac{216 \times 100}{1440}=15 \%$

S50. Ans.(c)

Sol. Let the sum be P and rate of interest per annum be R .
$\frac{6750}{4500}=\frac{\mathrm{P}\left(1+\frac{R}{100}\right)^{4}}{\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{2}}$
$\frac{6750}{4500}=\left(1+\frac{\mathrm{R}}{100}\right)^{2}$
$\Rightarrow\left(1+\frac{R}{100}\right)^{2}=\frac{9}{6}=\frac{3}{2}$
So, $\mathrm{P} \times \frac{3}{2}=4500$
$\Rightarrow \mathrm{P}=\frac{4500 \times 2}{3}=$ Rs. 3000

S51. Ans.(b)

Sol. ? $\approx 400 \div 8 \times 12+245-190 \simeq 655$

S52. Ans. (c)

Sol. $\frac{4}{5}$ of $? \simeq \frac{48}{100} \times 450+\frac{52}{100} \times 440$
$? \simeq 556$

S53. Ans.(d)

Sol.? $\simeq 12+26+6-11 \simeq 33$

S54. Ans.(a)

Sol. $? \simeq \frac{43}{100} \times 800+\frac{57}{100} \times 900 \simeq 857$

S55. Ans.(d)
Sol. $? \simeq \frac{115}{100} \times 560+\frac{84}{100} \times 420 \simeq 997$

S56. Ans.(c)

Sol. Let total no. of students who applied for the post of JE and AE from UP are 81x and 61x respectively.
$\therefore 81 \mathrm{x}+61 \mathrm{x}=1,15,700-(40,000+10,500+8,400)$
$=56,800 \Rightarrow x=400$
\therefore Required answer $=61 \times 400=24,400$

S57. Ans.(b)

Sol. Total candidates from Delhi who applied for the post of AE
$=5 \times 16,880-(20,000+36,000+7,200+4,800)=16,400$
\therefore Required percentage $=\frac{16,400}{7,200} \times 100=227 \frac{7}{9} \%$

S58. Ans.(d)

Sol. Required answer $=\frac{150}{100} \times \frac{60}{100} \times 16,400=14,760$

S59. Ans.(a)

Sol. Required total no. of candidates
$=12,500+8,400+\frac{80}{100} \times 20,000+5,400$
$=42,300$

S60. Ans.(c)

Sol. $\left(100-\frac{225}{14}\right) \%=\frac{1175}{1400}=\frac{47}{56} \%$
$\therefore \frac{47}{56} \rightarrow(8400+4800+2400+3200)$
\Rightarrow Total no. of candidates from all states together
$=\frac{56}{47} \times 18,800=22,400$
\therefore Required answer $=\frac{225}{1400} \times 22,400$
= 3,600

S61. Ans.(d)

Sol. From A, R + F + M +S = 90
From $B, R+M+S=18 \frac{1}{3} \times 3$
From C, $\mathrm{M}+\mathrm{S}=\frac{4}{7} \times 2 F$
From all three statements together, the answer can be obtained.

S62. Ans.(a)

Sol. From I \& II,
Let CP = x
S.P $=\frac{6 x}{5}$

Now, New S.P $=\frac{6 x}{5} \times \frac{90}{100}=\frac{54 x}{50}$
$\Rightarrow \frac{54 x}{50}-x=1200$
$\Rightarrow x=15000$
\therefore SP. $=18000$
\& from III \& I, we can obtain selling price.
\& from II \& III,
Let S.P. = x
When 10\% discount,
S.P. $=\frac{9 x}{10}$
$\therefore \frac{9 x}{10}-15000=1200$
$\Rightarrow x=18000$
Thus, any two of the three statements are required.

S63. Ans.(b)

Sol.
$12 \mathrm{G}+8 \mathrm{C} \rightarrow 24$ days
$\Rightarrow 3 \mathrm{G}+2 \mathrm{C} \rightarrow 24 \times 4$ days
From A,
$2 \mathrm{M}=(3 \mathrm{G}+2 \mathrm{C})$
$\Rightarrow 2 \mathrm{M} \rightarrow 24 \times 4$ days
$\Rightarrow 1 \mathrm{M} \rightarrow 24 \times 4 \times 2$ days
From B, $3 \mathrm{G}=6 \mathrm{C}$
$\Rightarrow \mathrm{G}=2 \mathrm{C}, \Rightarrow(12+4) \mathrm{G} \rightarrow 24$ days
$\Rightarrow 1 \mathrm{G} \rightarrow 24 \times 16$ days
\therefore from $A+B, 12 \mathrm{M}+12 \mathrm{G} \rightarrow\left(\frac{1}{24 \times 8}+\frac{1}{24 \times 16}\right) \times 12$
$\rightarrow \frac{1}{16}+\frac{1}{32} \rightarrow \frac{32}{3}$ days
From C,
Not known no. of persons.

S64. Ans.(d)

Sol. Let the thickness of gold be r.

Then, volume of gold = Volume of ball - Volume of lead ball Volume of gold
$=\frac{4}{3} \pi(2+r)^{3}-\frac{4}{3} \pi(2)^{3}$
Now, it is given that Volume of gold
$=$ Volume of lead ball
So, $\frac{4}{3} \pi(2)^{3}=\frac{4}{3} \pi(2+r)^{3}-\frac{4}{3} \pi(2)^{3}$
$\frac{4}{3} \pi(2)^{3}+\frac{4}{3} \pi(2)^{3}=\frac{4}{3} \pi(2+r)^{3}$
$\Rightarrow \frac{8}{3} \pi(2)^{3}=\frac{4}{3} \pi(2+r)^{3}$
$\Rightarrow 2(2)^{3}=(2+r)^{3}$
$\Rightarrow \sqrt[3]{2} \times 2=2+r$
$\Rightarrow 1.259 \times 2=2+r$
$(\because \sqrt[3]{2}=1.259)$
$\Rightarrow 2.518=2+r$
$\therefore \mathrm{r}=2.518-2=0.518 \mathrm{~cm}$

S65. Ans.(d)
Sol. Given, $2 \pi r=44$
$r=\frac{44}{2 \pi}=\frac{22}{\pi}=\frac{22 \times 7}{22}=7 \mathrm{~cm}$
Inner radius of pipe $=7-1$
$=6 \mathrm{~cm}$
Volume of pipe $=\pi r^{2} h$
$=\pi \times 6^{2} \times 7$
$=\frac{22}{7} \times 6^{2} \times 7$
$=792 \mathrm{~cm}^{3}$

S66. Ans.(c)
Sol.
$? \simeq \frac{68}{100} \times 1400-\frac{14}{100} \times 1300 \simeq 770$

S67. Ans.(d)
Sol.
$? \simeq 5467-3245+1123-2310 \simeq 1035$

S68. Ans.(d)
Sol.
$? \simeq \frac{6000}{10}+671-140$
$\simeq 1131$
$\simeq 1130$

PRELIMS BOOKS KIT

Ace - Reasoning | Quant | English

ENGLISH EDITION @ 799

S69. Ans.(e)

Sol.
? $\simeq 900-81-125$
$\simeq 694$
S70. Ans.(b)
Sol.
$? \simeq \frac{56 \times 24 \times 8}{16}$
$\simeq 672$
$\simeq 670$

S71. Ans.(a)

Sol. Let population of females and children in colony A be $3 x$ and 7 x respectively.
$\therefore 10 x=\frac{75}{100} \times 2400$
$\mathrm{x}=180$
No. of females in colony A in year $2017=540 \times \frac{120}{100}=648$
\therefore Required no. of males and children together in colony A in 2017 $=2400-648$
$=1752$

S72. Ans.(c)

Sol. Total no. of males in colony C $=\frac{50}{100} \times \frac{100}{30} \times 180$
$=300$
No. of males in colony $D=\frac{1}{3} \times \frac{84}{100} \times 800$
$=224$
\therefore Required difference $=300-224$
$=76$

S73. Ans.(b)

Sol. Total population of males in colony B
$=\frac{40}{100} \times \frac{2}{5} \times \frac{125}{100} \times 2400$
$=480$
And that of children in colony $C=\frac{30}{100} \times \frac{3}{5} \times \frac{125}{100} \times 2400$
$=540$
\therefore Required ratio $=\frac{480}{540}=8: 9$

S74. Ans.(d)

Sol. Let males in colony $\mathrm{D}=2 \mathrm{x}$
Females in colony $A=5 x$
Let population of children in colony $\mathrm{A}=\mathrm{a} \%$
\therefore No. of children in colony A in $2017=\frac{6 a}{5} \%$
From here we cannot find the required answer

S75. Ans.(e)

Sol. Let total population of colony $C=5 x$
\& that of colony $\mathrm{E}=4 \mathrm{x}$
Required Percent $=\frac{0.4 \times 4 x-0.3 \times 5 x}{0.3 \times 5 x} \times 100$
$=\frac{100}{15} \%=6.67 \%$

S76. Ans.(b)

Sol. $1 / 4 \mathrm{~min}=\frac{1}{4} \times 60 \mathrm{sec}=15 \mathrm{sec}$
$1 / 6 \mathrm{~min}=\frac{1}{6} \times 60 \mathrm{sec}=10 \mathrm{sec}$
Speed of the first train $=\frac{420}{15}=28 \mathrm{~m} / \mathrm{sec}$
Speed of the second train $=\frac{420}{10}=42 \mathrm{~m} / \mathrm{sec}$
Total speed in opposite direction $=28+42=70 \mathrm{~m} / \mathrm{sec}$
Total distance covered $=420+420=840$ meter
Time $=\frac{840}{70}=12 \mathrm{sec}$

S77. Ans.(d)

Sol. After servicing speed $=65 \mathrm{~km} / \mathrm{h}$
Time $=5$ hours
Distance $=$ Speed \times Time $=65 \times 5=325 \mathrm{~km}$
Before servicing, speed $=40 \mathrm{~km} / \mathrm{h}$.
So, time taken
$=\frac{\text { Distance }}{\text { Speed }}=\frac{325}{40}$
$=8$ hours (approx.)

S78. Ans.(a)

Sol. Let the speed of boat in still water $=u$
Speed in downstream $=u+4$
Speed in upstream= u-4
A/q, $\frac{6}{u+4}+\frac{6}{u-4}=2$
$6 u=u^{2}-16$
$u^{2}-6 u-16=0$
$(u+2)(u-8)=0$
$\mathrm{U}=8$

S79. Ans.(b)

Sol. Let the speed of boat in still water be $\mathrm{x} \mathrm{km} / \mathrm{hr}$
ATQ
$x+3+x-3=36$
$x=18$
Required time $=\frac{52.5}{21}=2.5 \mathrm{hr}$

S80. Ans.(a)
Sol. Let slower train moves with $\mathrm{x} \mathrm{km} / \mathrm{hr}$. Hence speed of faster train will be $(\mathrm{x}+6) \mathrm{kmph}$
$\therefore(\mathrm{x}+\mathrm{x}+6) \times 5=160$
Or, $10 x+30=160$
Or, $x=13$
\therefore speed of faster train $=13+6=19 \mathrm{~km} / \mathrm{hr}$
S81. Ans.(a)
Sol. ? - 4 = 5 + 6
\Rightarrow ? $=15$

S82. Ans.(c)
Sol. ? $=2.1020$

S83. Ans.(e)
Sol.
$\frac{?}{100} \times 540-40=196$
$\Rightarrow ?=43 \frac{19}{27}$
S84. Ans.(d)
Sol.
$?=\frac{(0.356-0.106)^{2}}{(0.632+0.368)^{2}}=0.0625$

S85. Ans.(c)

Sol.
$?=4 \times\left(\frac{9}{8} \times \frac{4}{3} \div \frac{3}{4} \times \frac{2}{3}\right)=12$
S86. Ans.(a)
Sol.
$\frac{\frac{325}{250}}{\frac{550}{375}}=\frac{325 \times 375}{250 \times 550}=39: 44$

S87. Ans.(c)

Sol. 2016: No. of consumers $=\frac{220}{100}[225]=495$ thousand
Electricity consumption = 550 Lacs
\therefore Electricity consumption per consumer $=\frac{550 \times 100000}{495 \times 1000}$
= 111 units per consumer
2015: Electricity consumption per consumer $=\frac{550 \times 100000}{375000}$
≈ 147 units per consumer
Hence, the Impact is reduction of 36 units per consumer

IBPS PO/CLERK 2019

S88. Ans. (b)

Sol. Total consumer all over the year $=225+250+300+350+375=1500$ thousand
Desired value $=\frac{325 \times 100000}{1500000}=21.67$ times approx

S89. Ans. (d)

Sol. Total units in 2011 and $2013=650$ Lacs
Total units in 2012 and $2014=900$ Lacs
Desired value $=\frac{250}{900} \times 100 \approx 28 \%$ approx.

S90. Ans.(c)

Sol. It is clear from the graph that unit consumption is highest in 2014 while consumers-electricity unit difference is maximum as well. Hence, Ratio of unit consumption to the number of consumers is maximum in 2014.

S91. Ans.(a)

Sol.
$\frac{3}{\mathrm{~A}}+\frac{27}{2 \mathrm{~B}}=1$
$=\frac{9}{2 \mathrm{~A}}+\frac{9}{\mathrm{~B}}=1$
Multiply (i) by $3 / 2$ and on solving
A will take 7.5 days and B will take 22.5 days.

S92. Ans.(c)

Sol. Let time taken by all to complete the work =x hours
Then,
A will take $=(x+6) h$
B will take $=(x+1) h$
C will take $=(2 \mathrm{x}) \mathrm{h}$
So,
$\frac{1}{(x+6)}+\frac{1}{x+1}+\frac{1}{2 x}=\frac{1}{x}$
$=\frac{2 \mathrm{x}^{2}+2 \mathrm{x}+2 \mathrm{x}^{2}+12 \mathrm{x}+\mathrm{x}^{2}+7 \mathrm{x}+6}{(\mathrm{x}+6)(\mathrm{x}+1)(2 \mathrm{x})}=\frac{1}{\mathrm{x}}$
$5 x^{2}+21 x+6=2 x^{2}+14 x+12$
$3 x^{2}+7 x-6=0$
$3 x^{2}+9 x-2 x-6=0$
$3 x(x+3)-2(x+3)=0$
$\mathrm{x}=\frac{2}{3},-3$
so,
$\mathrm{x}=40 \mathrm{mins}$

S93. Ans.(c)

Sol. Let filling capacity be $x \mathrm{~m}^{3} / \mathrm{min}$
So, emptying capacity $=(x+10) \mathrm{m}^{3} / \mathrm{min}$
According to question
$\frac{2400}{x}-\frac{2400}{x+10}=8$
$\Rightarrow 2400\left(\frac{x+10-x}{x(x+10)}\right)=8$
$\Rightarrow x^{2}+10 x-3000=0$
$\Rightarrow x=50 \mathrm{~m}^{3} / \mathrm{min}$

S94. Ans.(b)

Sol. Using formula,
$\frac{S(S+5)}{5} \times 4=600$
$S(S+5)=750=25(25+5)$
Speed of the train $=25 \mathrm{~km} / \mathrm{hr}$
Alternately,
$\frac{600}{s}-\frac{600}{s+5}=4$
$\frac{600 s+3000-600 s}{s(s+5)}=4$
$\mathrm{s}=25 \mathrm{~km} / \mathrm{hr}$

S95. Ans.(d)

Sol. Let the distance covered by cycle $=\mathrm{x}$
$\frac{x}{15}+\frac{90-x}{20}=5$
$\frac{4 x+270-3 x}{60}=5$
$\mathrm{x}=30 \mathrm{~km}$

S96. Ans.(d)
Sol. Series is $-11,-(11 \times 2),-(11 \times 3),-(11 \times 4), \ldots \ldots .$.

S97. Ans.(b)

Sol. Series is $\times 1+1, \times 1.5+1, \times 2+1, \times 2.5+1, \ldots \ldots .$.

S98. Ans.(c)
Sol. Series is $+(1 \times 12),-(2 \times 12),+(3 \times 12),-(4 \times 12),+(5 \times 12), \ldots \ldots$.

S99. Ans.(e)
Sol. Series is $\times 2-(1 \times 5), \times 2-(2 \times 5), \times 2-(3 \times 5), \times 2-(4 \times 5), \ldots \ldots$

S100. Ans.(e)

Sol. Series is $\times 2.5+20, \times 2.5+20, \times 2.5+20, \ldots \ldots$

S101. Ans.(b)

Sol. Total population of Delhi who is not smoking
$=\frac{67500}{20} \times 100-67,500$
$=2,70,000$
Required percentage $=\frac{\frac{5}{9} \times 67,500}{2,70,000} \times 100$
$\simeq 14 \%$

Adda 247

S102. Ans.(c)

Sol. Total persons who died due to smoking in Mumbai
$=\frac{82500}{4}$
$=20,625$
Required percentage $=\frac{20625}{\frac{2}{5} \times 82500} \times 100$
$=62.5 \%$

S103. Ans.(d)

Sol. Total production in Lucknow who is not smoker
$=52500 \times \frac{5}{3}-52500$
$=35,000$
\therefore Required ratio $=\frac{\frac{11}{15} \times 52500}{\frac{2}{3} \times 52,500}$
adda
$=\frac{11}{10}$

S104. Ans.(b)

Sol. Required difference
$=\frac{1}{5} \times\left[\frac{(5-4)}{9} \times 67,500+\frac{(11-4)}{15} \times 52,500+\frac{(3-2)}{5} \times 82,500+\frac{(5-1)}{6} \times 45,000+\frac{(17-8)}{25} \times 75,000\right]$
$=\frac{1}{5} \times 105,500$
$=21,100$

S105. Ans.(c)

Sol. Required ratio
$=\left(\frac{90}{100} \times \frac{5}{9} \times 67,500\right):\left(\frac{80}{100} \times \frac{5}{6} \times 45,000\right):\left(\frac{75}{100} \times \frac{17}{25} \times 75,000\right)$
$=33,750: 30,000: 38,250$
$=45: 40: 51$

S106. Ans.(c)
Sol. Let Arun takes x and Rahim takes $3 x$ days to finish the work
$\because 3 x-x=20 \Rightarrow x=10$
Rahim's time to finish the work $=3 \times 10=30$ days
\therefore (Arun + Rahim)'s 1 days work $=\frac{1}{10}+\frac{1}{30}=\frac{4}{30}$
\therefore (Arun + Rahim) will finish the work in $\frac{15}{2}$ days
i.e. $7 \frac{1}{2}$ days.

S107. Ans.(b)

Sol. 1 man con complete the work in $16 \times 24=384$ days
1 man per day work $=\frac{1}{384}$
16 men per day work $=\frac{16}{384}=\frac{1}{24}$
16 women per day work $=\frac{16}{32 \times 24}=\frac{1}{48}$
$(16$ men +16 women $)$ per day work $=\frac{1}{24}+\frac{1}{48}=\frac{1}{16}$
Work done in 12 days $=\frac{12}{16}$
Remaining work $=1-\frac{12}{16}=\frac{1}{4}$
This work should be completed in 2 days
So per day work should be $\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}$
But right now only $\frac{1}{16}$ work per day is being done.
So $\left(\frac{1}{8}-\frac{1}{16}=\frac{1}{16}\right)$ more work is required for which $\frac{1}{\frac{16}{\frac{1}{384}}}=24$ more man are required.

S108. Ans.(e)

Sol. Rinki: 15 days $\rightarrow 36 \%$ of the work
$\therefore 20$ days $\rightarrow 48 \%$ of the work
Total work done by Rinki $=48 \%+36 \%=84 \%$
Which means kirti did only 16% of the work in 20 days while comparing the working efficiency
Rinki kirti
In 20 days, $48 \% \quad 16 \%$
\therefore Efficiency 3 : 1

S109. Ans.(e)

Sol. First train speed $=45 \mathrm{~km} / \mathrm{hr}$
$2^{\text {nd }}$ train speed $=60 \mathrm{~km} / \mathrm{hr}$
\therefore Difference in distance covered in $1 \mathrm{hr}=15 \mathrm{~km}$

S110. Ans.(c)

Sol. Let the cost price of one table be x.
Then, cost price of other table will be ($2200-\mathrm{x}$).
$x \times \frac{95}{100}+(2200-x) \times \frac{106}{100}=2200$
$\Rightarrow 95 \mathrm{x}+233200-106 \mathrm{x}=220000$
$\Rightarrow 11 \mathrm{x}=13200$
$\Rightarrow \mathrm{x}=\mathrm{Rs} 1200$
And, $2200-\mathrm{x}=$ Rs 1000

S111. Ans.(d)

Sol. Income in the year of 2008 by R
$=\frac{100}{9} \times 18.9 \times \frac{109}{100}$
$=$ Rs. 228.9 lakhs

S112. Ans.(a)

Sol.
$\%$ rise $=\frac{14-10}{10} \times 100=40 \%$

S113. Ans.(a)

Sol. Total expenditure of P in 2007
$=\frac{100}{7} \times 2.1=30$ lakhs
S114. Ans.(c)
Sol. Average \% profit of company S
$=\frac{1}{6} \times(7+8+13+14+15+15)$
$=\frac{1}{6} \times 72=12 \%$
S115. Ans.(b)
Sol. Average of percentage value of profit earned by all companies except Q in the year 2005
$=\frac{1}{5} \times(9+5+8+12+6)$
$=\frac{1}{5} \times 40=8 \%$
\therefore Required difference $=10-8=2 \%$
S116. Ans.(d)
Sol. Series is

Sol. Pattern is $\div 8, \div 6, \div 4, \div 2$
$\therefore ?=12.5 \div 4=3.125$

S118. Ans.(a)

Sol. Series is

PHASE-I

- 10 Full-Length Mocks

Bilingual

S119. Ans.(d)

Sol. Pattern is $+14 \times 1,+14 \times 3,+14 \times 9,+14 \times 27$
\therefore ? $=564+14 \times 81=1698$

S120. Ans.(b)

Sol. Pattern is $\times 1+1, \times 2+2, \times 3+3, \times 4+4, \times 5+5$
\therefore ? $=352 \times 5+5=1765$

S121. Ans.(a)

Sol. From 1, Let one stem is bought at Rs. x and other will be bought at Rs. $(7500-x$)
According to question,
$x \times \frac{116}{100}+(7500-x) \times \frac{86}{100}=7500$
$\Rightarrow 116 x+7500 \times 86-86 x=7,50,000$
$\Rightarrow x=3500$
And, other's selling price is $=7500-3500$
$=4000$
\therefore Required difference $=4000-3500=500$
From 2, Let cost price of $B=$ Rs. x
$\therefore \mathrm{CP}$ of $\mathrm{A}=(\mathrm{x}+200)$
$\therefore \frac{90}{100} \times(\mathrm{x}+200)+\frac{125}{100} \times \mathrm{x}=\frac{104}{100} \times(2 \mathrm{x}+200)$
$\Rightarrow 90 \mathrm{x}+18000+125 \mathrm{x}=208 \mathrm{x}+20800$
$\Rightarrow \mathrm{x}=400$
Quantity 1 > Quantity 2

S122. Ans.(a)

Sol. From 1, Let speeds of A and B is $3 x \mathrm{kmph}$ and 4 x kmph respectively.
Let time taken by $\mathrm{A}=\mathrm{t}$ hours
And time taken by B,
$=\left(\mathrm{t}-\frac{3}{4}\right)$ hours
$\therefore 3 \mathrm{x} \times \mathrm{t}=4 \mathrm{x} \times\left(\mathrm{t}-\frac{3}{4}\right)$
$\Rightarrow 3 \mathrm{t}=4 \mathrm{t}-3$
$\Rightarrow \mathrm{t}=3$ hours
\therefore Required distance
$=\frac{4}{7} \times 28 \times \frac{9}{4}+\frac{3}{7} \times 28 \times 3$
$=72 \mathrm{~km}$
From 2, Total cost to the shopkeeper
$=30 \times 45$
= Rs. 1350
Let required rate is Rs. x per kg
$\therefore 12 \times 50+18 \times \mathrm{x}=\frac{125}{100} \times 45 \times 30$
$\Rightarrow 18 \mathrm{x}=1687.5-600$
$\Rightarrow \mathrm{x} \simeq$ Rs. 60 per kg
Quantity 1 > Quantity 2

S123. Ans.(a)

Sol. Required percentage
$=\frac{\frac{30}{100} \times 3+\frac{45}{100} \times 7}{10} \times 100$
= 40.5%

S124. Ans.(d)

Sol. Original price
$=1360 \times \frac{100}{80} \times \frac{100}{85}=2,000$

S125. Ans.(b)

Sol. 2S, 2E, P, C, I
Required ways $=\frac{5!}{2!\times 2!} \times 2!=60$

Solutions (126-128):

Let total students doing B. tech in IIT Delhi be $100 x$ and total students doing B. tech in IIT Mumbai be $120 x$
Total students in CS stream in IIT Mumbai $=120 x \times \frac{40}{100}=48 x$
Total students in Mechanical stream in IIT Mumbai $=120 x \times \frac{20}{100}=24 x$
Total students in Electrical stream in IIT Mumbai
$=120 x-(48 x+24)=48 \mathrm{x}$
Total students in CS stream in IIT Delhi
$=48 x \times \frac{100}{240}=20 x$

Total students in Mechanical stream in IIT Delhi
$=24 x \times 2=48 x$
Total students in Electrical stream in Delhi IIT
$=100 x-(20 x+48 x)=32 x$
Given $32 x=240$
$x=7.5$
Total students doing B. TECH in IIT Delhi
$=7.5 \times 100=750$
Total students doing B. tech in IIT Mumbai
$=7.5 \times 120=900$

IIT Delhi		IIT Mumbai	
Stream	Students	Stream	Students
CS	150	CS	360
Mechanical	360	Mechanical	180
Electrical	240	Electrical	360

S126. Ans.(b)
Sol. Required percentage $=\frac{600-360}{600} \times 100$
$=\frac{240}{600} \times 100=40 \%$

S127. Ans.(e)

Sol. Average number of students in CS stream in both IIT's
$=\frac{150+360}{2}=255$
Average number of students in Electrical stream in both IIT's
$=\frac{240+360}{2}=300$
Required difference $=300-255=45$

S128. Ans.(c)

Sol. Required average $=\frac{750+900}{2}$
$=\frac{1650}{2}=825$

S129. Ans.(e)

Sol. Total surface area of sphere $=4 \pi r^{2}$
Total surface area of hemisphere $=3 \pi r^{2}$
Let radius of hemisphere and sphere be $3 x \mathrm{~cm}$
And $2 x \mathrm{~cm}$ respectively.
ATQ-
$3 \pi r^{3}-4 \pi r^{2}=423.5 \mathrm{~cm}^{2}$
$3 \times \frac{22}{7} \times(3 x)^{2}-4 \times \frac{22}{7} \times(2 x)^{2}=423.5$
$x=3.5 \mathrm{~cm}$
Radius of hemisphere $=\frac{21}{2} \mathrm{~cm}=10.5$

Sol. Let initially wine was 3 x
\therefore Final quantity of wine
$=3 x\left(1-\frac{x}{3 x}\right)^{4}$
$=3 x \times \frac{16}{81}$
$=\frac{16 x}{27}$
\therefore Required ratio
$=\frac{\frac{16 \mathrm{x}}{27}}{3 \mathrm{x}-\frac{16 \mathrm{x}}{27}}=\frac{16}{65}$

S131. Ans.(a)

Sol.
$55 \times 48-\frac{?}{100} \times 8000=(12)^{3}+68 \times 4$
$\frac{?}{100} \times 8000=2640-1728-272$
$?=\frac{640 \times 100}{8000}$
? = 8

S132. Ans.(b)
Sol.
$\frac{352+?}{32}+\frac{125}{100} \times 64-\sqrt{361}=(10)^{2}$
$\frac{352+?}{32}=100+19-80$
? = 1248-352
? = 896

S133. Ans. (d)
Sol.
$\frac{4590}{?}+(25)^{2}-\frac{37 \times 4800}{100}+105=(22)^{2}$
$\frac{4590}{?}+625-1776+105=484$
$\frac{4590}{?}=(484+1776-730)$
$?=\frac{4590}{1530}$
? $=3$

S134. Ans.(b)

Sol.
$44 \times 25+48 \times 15+?=\frac{32}{100} \times 6000$
$1100+720+$? $=1920$
? = $1920-1820$
? = 100

S135. Ans.(a)

Sol.
$\frac{?}{100} \times 700+(21)^{2}-\sqrt{3844}=(18)^{3}$
$\frac{?}{100} \times 700+441-62=5832$
$\frac{?}{100} \times 700=5832-441+62$
$?=\frac{5453}{7}$
$?=779$

S136. Ans.(b)

Sol. From 1, one day work of one man in both cases will be equal.
$\therefore 40 \times 28=\frac{3}{4} \times 28 \times(40+x)$
$\Rightarrow x=40 \times \frac{1}{3}=13 \frac{1}{3}$
$\simeq 14$
From 2,
Let present ages of Ria and Shweta be 4 x and 7 x respectively.
\therefore Abby's present age $=(7 \mathrm{x}+4)$ years
ATQ,
$4 \mathrm{x}+7 \mathrm{x}+4=48 \Rightarrow \mathrm{x}=4$
Shweta's present age $=7 \times 4=28$ years
Abby's present age $=28+4=32$ years
\therefore Abby's age two years ago $=32-2=30$ years
\therefore Quantity $1<$ Quantity 2

S137. Ans.(b)

Sol. From 1, Ajay's score $=63+30=93$
Rahul's score $=93-15=78$
Manish's score $=78-10=68$
\therefore Suresh's score $=63 \times 3-(68+78)=43$
\therefore Required sum $=68+43=111$
From 2, CP of Chandra= Rs 150
CP of Mayank $=150 \times \frac{70}{100}=105$
SP of Mayank $=\frac{120}{100} \times 105=$ Rs 126

S138. Ans.(a)

Sol. From 1, Let length of train $B=x m$
\therefore length of train $A=2 x \mathrm{~m}$
Let speed of train $B=s \mathrm{~m} / \mathrm{sec}$
And, speed of train A (in m/sec)
$=90 \times \frac{5}{18}=25 \mathrm{~m} / \mathrm{sec}$
ATQ,
$(25-\mathrm{s}) \times 5=(25-2 \mathrm{~s}) \times 15$
$\Rightarrow 25-\mathrm{s}=75-6 \mathrm{~s}$
$\Rightarrow \mathrm{s}=10 \mathrm{~m} / \mathrm{sec}$
\therefore Length of train B
$=\frac{(25-10) \times 5}{3}$
$=25 \mathrm{~m}$
From 2, Let Shilpa's present age $=\mathrm{x}$ years
Raghu's present age $=y$ years
$x+4+y-4=63$
$x+y=63 \ldots$...i)
and, $\frac{x-4}{y+3}=\frac{10}{21}$
$\Rightarrow 21 \mathrm{x}-84=10 \mathrm{y}+30$
$\Rightarrow 21 \mathrm{x}-10 \mathrm{y}=114 \ldots$ (ii)
Solving (i) and (ii), we get
$x=24$ years

S139. Ans.(d)

Sol. Required ways $=\frac{6!}{2!}=360$

S140. Ans.(c)

Sol. Let the fraction $=\frac{x}{y}$
After increasing numerator and denominator $=\frac{3.5 x}{2.5 y}$
\therefore Required percentage
$=\frac{\frac{3.5 x}{2.5 y}}{\frac{x}{y}} \times 100=140 \%$

S141. Ans.(b)

Sol. Required difference
$=\frac{25}{100} \times \frac{55}{100} \times 2,84,000-\frac{18}{100} \times \frac{75}{100} \times 2,84,000$
$=39,050-38,340=710$

S142. Ans.(c)
Sol. Required ratio $=\frac{42 \times 15}{18 \times 75}=\frac{7}{15}$
S143. Ans.(d)
Sol. Required average
$=\frac{1}{3}\left(\frac{25}{100} \times \frac{45}{100}+\frac{18}{100} \times \frac{25}{100}+\frac{5}{100} \times \frac{24}{100}\right) \times 2,84,000$
$=2840 \times \frac{1}{3}\left[\frac{45}{4}+\frac{18}{4}+\frac{12}{10}\right]$
$=2840 \times \frac{1}{3}\left[\frac{450+180+48}{40}\right]$
$=284 \times \frac{1}{3} \times \frac{678}{4}=71 \times 226=16046$

S144. Ans.(a)

Sol. No. of employees in Home ministry who do not have higher education
$=\frac{25}{100} \times \frac{55}{100} \times 2,84,000$
$=39,050$
No. of employees in Defence Ministry who have higher education
$=\frac{42}{100} \times \frac{15}{100} \times 2,84,000$
$=17,892$
\therefore Required percentage
$=\frac{39,050-17,892}{17,892} \times 100 \simeq 118 \%$

S145. Ans.(d)

Sol. Required total number
$=\left(\frac{42}{100} \times \frac{15}{100}+\frac{25}{100} \times \frac{18}{100}+\frac{10}{100} \times \frac{40}{100}\right) \times 2,84,000 \times \frac{25}{100}$
$=\left(\frac{42}{100} \times \frac{15}{100}+\frac{25}{100} \times \frac{18}{100}+\frac{10}{100} \times \frac{40}{100}\right) \times 71000$
$[63+45+40] \times 71=148 \times 71$
$=10,508$

S146. Ans.(d)
Sol.
$(14+16+14+12)+\left(\frac{1}{11}+\frac{3}{11}+\frac{4}{121}+\frac{3}{11}\right)=?$
$?=56+\left(\frac{11+33+4+33}{121}\right)$
$=56+\frac{81}{121}$
$=56 \frac{81}{121}$

PUBLICATIONS PRIME BANK POICLERK Complete Package
 7 Printed Edition Books
 3 eBooks

S147. Ans.(e)

Sol. $49.5+987-48=$?
? $=988.5$

S148. Ans.(c)

Sol. $10971-941 \times 3=$?
? $=8148$

S149. Ans.(b)

Sol. $9 \times 25 \times \frac{63}{75}=$?
? $=189$

S150. Ans.(a)

Sol. $88 \times \sqrt{?}=15224$
$\sqrt{2}=173$
? $=29929$

S151. Ans.(d)
Sol. Let quantity of A \& B be 4 x \& x .
According to the question,
$\frac{4 x-10 \times \frac{4}{5}}{x-10 \times \frac{1}{5}+10}=\frac{2}{3}$
$\Rightarrow \frac{4 x-8}{x+8}=\frac{2}{3}$
$\Rightarrow 12 \mathrm{x}-24=2 \mathrm{x}+16$
$\Rightarrow 10 \mathrm{x}=40$
$\mathrm{x}=4$
\therefore Required answer $=4 \mathrm{x}=4 \times 4=16$ litres

S152. Ans.(c)

Sol. Let initially x litres of Acid were drawn off
$\therefore 24=54\left(1-\frac{\mathrm{x}}{54}\right)^{2}$
$\Rightarrow 24 \times 54=(54-x)^{2}$
$\Rightarrow \mathrm{x}^{2}-108 \mathrm{x}+1620=0$
$\Rightarrow \mathrm{x}^{2}-90 \mathrm{x}-18 \mathrm{x}+1620=0$
$\Rightarrow(\mathrm{x}-90)(\mathrm{x}-18)=0$
$\times \quad \checkmark$
$\therefore \mathrm{x}=18$ litres

S153. Ans.(d)
Sol. After 1st day, remaining content in container $=2 / 3$
After $2^{\text {nd }}$ day, remaining content in container
$=\frac{2}{3}-\frac{3}{4} \times \frac{2}{3}$
$=\frac{1}{6}$

S154. Ans.(a)

Sol. From 1, Let each sum was Rs. P
$\therefore \frac{\mathrm{P} \times 9 \times 7}{200}-\frac{\mathrm{P} \times 4 \times 7}{100}=31.5$
$\Rightarrow \mathrm{P}=\frac{31.5 \times 200}{7}$
$\Rightarrow \mathrm{P}=900$ rupees
From 2, Total required numbers between 2000 and 3000
$=1 \times 7 \times 6 \times 5$ (For eg. 2035, 2345)
$=210$
Quantity 1> Quantity 2

S155. Ans.(b)

Sol. From 1, Let the maximum marks of the exam be x
ATQ,
$\frac{20}{100} x+30=\frac{50}{100} \times x-15$
$\Rightarrow \frac{50}{100} \mathrm{x}-\frac{20}{100} \mathrm{x}=45$
$\Rightarrow \frac{30}{100} \mathrm{x}=45$
$\Rightarrow \mathrm{x}=\frac{45 \times 100}{30}=150$
Passing marks $=\frac{150}{100} \times 20+30=60$
From 2, Let the initial price of mobile be Rs. 100
Final price of mobile $=100 \times \frac{140}{100} \times \frac{80}{100} \times \frac{150}{100}=R s .168$
So net change in price $=\frac{168-100}{100} \times 100=68 \%$
Quantity $1<$ Quantity 2
Solutions (156-160):

	Monday	Tuesday	Wednesday	Thursday	Friday
Tata	180	150	250	150	180
Renault	160	220	200	180	140
Maruti	200	200	300	250	200
	540	570	750	580	520

S156. Ans.(b)

Sol.
$\frac{540}{750}=18: 25$

S157. Ans.(a)
Sol. Total number of cars produced by Renault from Monday to Friday $=900$

S158. Ans. (c)

Sol. Required average $=\frac{1150}{5}=230$

S159. Ans.(c)
Sol. No. of cars produced on Tuesday and Thursday is same i.e. 150

S160. Ans.(b)

Sol. Maximum number of cars produced $=750$, on Wednesday.

S161. Ans.(a)

Sol. I. $x^{2}+12 x+36=0$
$x^{2}+6 x+6 x+36=0$
$x(x+6)+6(x+6)=0$
$x=-6$ or -6
II. $y^{2}=16$
$y \pm 4$
$y>x$

S162. Ans.(e)
Sol. I. $9 \mathrm{x}^{2}+3 \mathrm{x}-2=0$
$9 x^{2}+6 x-3 x-2=0$
$3 x(3 x+2)-1(3 x+2)=0$
$x=\frac{-2}{3}$ or $\frac{1}{3}$
II. $8 y^{2}+6 y+1=0$
$8 y^{2}+4 y+2 y+1=0$
$4 y(2 y+1)+1(2 y+1)=0$
$\mathrm{y}=\frac{-1}{4}$ or $\frac{-1}{2}$
No relation

S163. Ans.(d)
Sol. I. $2 x^{2}-25 x+77=0$
$2 x^{2}-14 x-11 x+77=0$
$2 x(x-7)-11(x-7)=0$
$x=7$ or $\frac{11}{2}$
II. $2 y^{2}-21 y+55=0$
$2 y^{2}-10 y-11 y+55=0$
$2 y(y-5)-11(y-5)=0$
$y=\frac{11}{2}$ or 5
$x \geq y$
S164. Ans.(e)
Sol. I. $2 \mathrm{x}^{2}+9 \mathrm{x}+7=0$
$2 x^{2}+7 x+2 x+7=0$
$\mathrm{X}(2 \mathrm{x}+7)+1(2 \mathrm{x}+7)=0$
$x=-1$ or $\frac{-7}{2}$
II. $2 y^{2}+9 y+10=0$
$2 y^{2}+5 y+4 y+10=0$
$Y(2 y+5)+2(2 y+5)=0$
$\mathrm{y}=-2$ or $\frac{-5}{2}$
No relation

S165. Ans.(e)
Sol. I. $9 \mathrm{x}^{2}-33 \mathrm{x}+28=0$
$9 x^{2}-12 x-21 x+28=0$
$3 x(3 x-4)-7(3 x-4)=0$
$x=\frac{4}{3}$ or $\frac{7}{3}$
II. $6 y^{2}-25 y+25=0$
$6 y^{2}-15 y-10 y+25=0$
$3 y(2 y-5)-5(2 y-5)=0$
$y=\frac{5}{2}$ or $\frac{5}{3}$
\therefore No relation

S166. Ans.(b)

Sol. Required percentage
$=\frac{45 \times \frac{5}{9}+72 \times \frac{3}{8}}{54 \times \frac{2}{3}+60 \times \frac{3}{5}} \times 100$
$=\frac{25+27}{36+36} \times 100=72.22 \%$
S167. Ans.(c)
Sol. Required difference
$=\left(36 \times \frac{5}{12}+45 \times \frac{4}{9}\right)-\left(72 \times \frac{3}{8}+60 \times \frac{2}{5}\right)$
$=(27+24)-(15+20)=51-35=16$

S168. Ans.(e)

Sol. New total students in institute $D=60+72 \times \frac{5}{8} \times \frac{1}{3}=75$
Remaining students in institute $C=72-15=57$
Required ratio $=\frac{57}{75}=19: 25$

S169. Ans.(c)

Sol. Boys in institute Z $=45 \times \frac{4}{9} \times \frac{120}{100}=24$
Total students in institute $Z=72 \times \frac{7}{8}=63$
Girls in institute $\mathrm{Z}=63-24=39$
Required percentage $=\frac{39}{63} \times 100=61 \frac{19}{21} \%$

S170. Ans.(a)

Sol. Required average $=\frac{1}{3}\left(54 \times \frac{1}{3}+72 \times \frac{3}{8}+60 \times \frac{2}{5}\right)=23$

S171. Ans.(b)

Sol. If first digit is ' 3 ' then remaining numbers can be formed in 9^{4} ways $=6561$ ways
If first digit isn't ' 3 ' then first digit can be formed in 8 ways (excluding 3 and 0). Now out of remaining four one should be ' 3 ' and remaining three digits can be formed in 9^{3} ways $=729$ ways
So, total ways to form five digit number in which first digit isn't ' 3 '
$=4 \times 8 \times 729=23,328$
' 4 ' is multiplied because the digit ' 3 ' can take four places.
And, Total ways to form five digit numbers in which first digit is ' 3 '
$=6561$ ways
Total number of ways $=23,328+6561=29,889$

S172.Ans.(a)

Sol. To get a tail, two diamonds should occur.
No. of ways $={ }^{13} C_{2}=13 \times 12 \times \frac{1}{2}=78$

S173. Ans.(a)

Sol. When unit digit is ' 0 '
Number of ways $=6 \times 5 \times 1=30$
When unit digit is ' 5 '
Number of ways= $5 \times 5 \times 1=25$
Total number of ways $=30+25=55$

S174. Ans.(d)

Sol. No. of triangles formed $={ }^{12} \mathrm{C}_{3}-{ }^{8} \mathrm{C}_{3}$
= 220-56 = 164

S175. Ans.(d)

Sol. $\underline{v} \underline{\underline{v}} \underline{\underline{c}} \underline{\underline{c}} \underline{\underline{v}} \underline{\underline{v}} \underline{\underline{c}} \underline{v}$
No of consonants = 5
No of vowel = 4
5 consonants in 5 ways $=5$!
4 vowels in 4 way $=4!\times 6 C_{4}$
Total arrangement $=15 \times 4!\times 5!$

S176. Ans.(a)
Sol. $\frac{35}{100} \times 3500+\frac{25}{100} \times 2600-1260 \simeq$?
? = $1225+650-1260$
? $=615$

S177. Ans.(e)

Sol. $2396+260 \times 5-450-? \simeq 590$
? $\simeq 2396+1300-450-590$
? $\simeq 2656$

S178. Ans.(d)

Sol.
$\frac{55}{100} \times 2000+? \times \frac{5000}{100} \simeq 1825$
$55 \times 20+? \times 50 \simeq 1825$
$? \simeq \frac{1825-1100}{50}$
$? \simeq 14.5$

S179. Ans.(a)
Sol. $(15 \times 20)+\left(5^{2} \times 13\right) \approx(?)^{2}$
$300+325 \approx(?)^{2}$
$?^{2} \approx 625$
? ≈ 25

S180. Ans.(d)

Sol. $2524 \div \sqrt{16}-331 \approx(5)^{2} \times$?
$2524 \times \frac{1}{4}-331 \approx 25 \times$?
$631-331 \approx 25 \times$?
? $=300 \times \frac{1}{25}$
? $=12$

S181. Ans.(e)

Sol. I. $\sqrt{x+18}=\sqrt{144}-\sqrt{49}$
$\Rightarrow \sqrt{x+18}=5$
$\Rightarrow x+18=25$
$\Rightarrow x=7$
II. $y^{2}+409=473$
$\Rightarrow y^{2}=64$
$\Rightarrow y= \pm 8$
No relation between x and y .

S182. Ans.(a)

Sol. I. $y^{2}-x^{2}=32$
$\Rightarrow(x+2)^{2}-x^{2}=32$
$\Rightarrow x^{2}+4+4 x-x^{2}=32$
$\Rightarrow 4 x=28$
$\Rightarrow x=7$
II. $\mathrm{y}-\mathrm{x}=2$
$\Rightarrow y-7=2$
$\Rightarrow y=9$
$\therefore x<y$

S183. Ans.(d)

Sol. I. $x^{2}-7 x+2 x-14=0$
$x(x-7)+2(x-7)=0$
$x=7,-2$
II. $y^{2}+5 y+2 y+10=0$
$y=-2,-5$
$x \geq$ y

S184. Ans.(a)

Sol. I. $8 x^{2}+78 x+169=0$
$\Rightarrow 8 x^{2}+52 x+26 x+169=0$
$\Rightarrow 4 x(2 x+13)+13(2 x+13)=0$
$\Rightarrow(4 x+13)(2 x+13)=0$
$\Rightarrow x=-\frac{13}{4},-\frac{13}{2}$

II. $20 y^{2}-117 y+169=0$
$\Rightarrow 20 y^{2}-65 y-52 y+169=0$
$\Rightarrow 5 y(4 y-13)-13(4 y-13)=0$
$\Rightarrow(5 y-13)(4 y-13)=0$
$\Rightarrow y=\frac{13}{5}, y=\frac{13}{4}$
$\therefore x<y$

S185. Ans.(b)

Sol. I. $5 x^{2}+5 x-3 x-3=0$
$5 x(x+1)-3(x+1)=0$
$x=\frac{3}{5},-1$
II. $2 y^{2}+4 y+3 y+6=0$
$2 y(y+2)+3(y+2)=0$
$y=\frac{-3}{2},-2$
$x>y$

S186. Ans.(b)

Sol.

Quantity 1: let the work is 36
X, Y and Z can complete 3 units, 2 units and 4 units per days respectively.
3 days work $=3+3+3+2+4=15$
6 day's work $=15 \times 2=30$
5 day's work $=30+3+3=36$
Total work is completed is 8 days
$\mathrm{x}=8$ days
Quantity II: Let remaining work is completed by A in 'a' days.
ATQ,
$\frac{a+2+4}{20}+\frac{2}{12}+\frac{6}{15}=1$
$\frac{3(a+6)+5 \times 2+4 \times 6}{60}=1$
$3 a+18+10+24=60$
$\mathrm{a}=\frac{8}{3}$ days
$\mathrm{y}=\frac{8}{3}+2+4$
$\mathrm{y}=8 \frac{2}{3}$ days
$\mathrm{y}>x$
Quantity II > Quantity I

S187. Ans.(c)

Sol. Quantity I. (5C2 * 4C2)/12C4 $=60 / 495=4 / 33$
Quantity II. (5C2 * 4C1 * 3 C 1) $/ 12 \mathrm{C} 4=120 / 495=8 / 33$
Quantity II > Quantity I

S188. Ans.(e)

Sol. C.P. of article
$=5700 \times \frac{100}{60}=$ Rs. 9500
S.P. of article to gain 30% profit
$=9500 \times \frac{130}{100}=$ Rs. 12,350

S189. Ans.(b)

Sol. Let radius of circle A be r cm
ATQ
$2 \pi r-2 r=90$
$r=21 \mathrm{~cm}$
Radius of circle $B=14 \mathrm{~cm}$
Area of circle $B=616 \mathrm{~cm}^{2}$

S190. Ans.(a)

Sol. Ratio of investment of Rita and Gita
= 24000: 40000
= 3 : 5
\therefore Profit of Rita
$=\frac{1}{2} \times \frac{40}{100} \times 16800+\frac{3}{8} \times \frac{60}{100} \times 16800$
$=3360+3780$
= Rs. 7,140

S191. Ans.(d)

Sol.

S192. Ans.(c)
Sol.

S193. Ans.(e)

Sol.

820					
120	320	?	2070	5195	13007.5
$\times 2.5+204 \leq \times 2.5+204 \leq \times 2.5+204 \leq \times 2.5+204$					

S194. Ans.(a)

Sol.

So, the answer is 84.5

S195. Ans.(b)
Sol.

So, the answer is 2230 .
S196. Ans.(c)
Sol.
$\frac{24 \times 13 \times 32}{224 \times 16 \times 52}=\frac{36 \times 18 \times x}{432 \times 21 \times 64} \quad(x=$ no. of days $)$
$\frac{1}{224}=\frac{9 x}{432 \times 7 \times 32}$
$\frac{1}{7}=\frac{x}{48 \times 7} \Rightarrow x=48$ days
Concept -
$\frac{\mathrm{m}_{1} \times \mathrm{d}_{1} \times \mathrm{h}_{1}}{\mathrm{w}_{1}}=\frac{\mathrm{m}_{2} \times \mathrm{d}_{2} \times \mathrm{h}_{2}}{\mathrm{w}_{2}}$
S197. Ans.(a)
Sol. Let 25 paise coins $=x$
\therefore Rs. 1 coins $=3 \mathrm{x}$
$\therefore 50$ paise coins $=(220-4 x)$
ATQ,
$3 x+\frac{x}{4}+\frac{(220-4 \mathrm{x})}{2}=160$
$\Rightarrow 12 \mathrm{x}+\mathrm{x}+440-8 \mathrm{x}=160 \times 4 \Rightarrow \mathrm{x}=40$
$\therefore 50$ paise coins $=220-160=60$

S198. Ans.(b)

Sol. Let A = Anup's age
M = Mahesh's age
S = Shyam's age
$\frac{S-6}{18}=A$
Also, $A=3$ years ($\because \mathrm{M}=5$ years)
$\therefore S=3 \times 18+6=60$ years

S199. Ans.(b)

Sol. Let father's age $=\mathrm{F}$, Son's age $=\mathrm{y}$
3F $=8 \mathrm{y}$
$\Rightarrow 3 \mathrm{~F}-8 \mathrm{y}=0$
$\Rightarrow(\mathrm{F}+8)=2(\mathrm{y}+8)$
$\Rightarrow F-2 y=8$
From (i) - (ii) $\times 3$
$\mathrm{y}=$ son's age $=12$ years
And $\mathrm{F}=$ father's age $=32$ years.

S200. Ans.(c)

Sol. Ratio of time taken by A \& B = 3:2
If $3 x \& 2 x$ be the time taken by them, then
$3 x-2 x=10$
or, $x=10$
\Rightarrow A takes 30 minutes at normal speed.
At double its speed, it will cover the distance in $\frac{30}{2}=15$ minutes.

S201. Ans.(d)

Sol. Let Rohan's age $=x$
\therefore Rahul's age $=(\mathrm{x}+8)$ years
ATQ,
$\mathrm{x}+8+5=2(\mathrm{x}+5)$
$\Rightarrow \mathrm{x}=3$ years
\therefore Rohan's age after 20 years $=23$ years

S202. Ans.(d)

Sol. Total expenditure of Neha $=\frac{100}{65} \times 7800=$ Rs 12000
\therefore Total annual salary $=\frac{11}{6} \times 12000 \times 12=$ Rs $2,64,000$

S203. Ans.(c)

Sol. Total expenditure of Reena $=\frac{100}{42} \times 4200=$ Rs 10,000
\therefore Savings of Reena $=22000-10000=$ Rs 12,000
Total expenditure of Shaalu $=\frac{100}{60} \times 7200=$ Rs 12000
\therefore Savings of Shaalu $=26000-12000=$ Rs 14000
So, required difference = Rs 2000

S204. Ans.(b)

Sol. Expenditure of Seema on rent $=\frac{22}{100} \times \frac{9}{14} \times 28000=$ Rs 3960
Expenditure of Shaalu on food $=\frac{25}{60} \times 7200=$ Rs 3000
\therefore Required percentage $=\frac{3960}{3000} \times 100=132 \%$

S205. Ans.(e)

Sol. Savings of Seema $=\frac{5}{14} \times 28000=$ Rs 10000
Savings of Aarti $=\frac{8}{9} \times 18000=$ Rs 16000
\therefore Required percentage $=\frac{6000}{16000} \times 100=37.5 \%$

S206. Ans.(b)

Sol. The series is $4^{3}+4,5^{3}-5,6^{3}+6,7^{3}-7,8^{3}+8,9^{3}-9, \ldots$
i.e.
$4^{3}+4=68$,
$5^{3}-5=120$,
$6^{3}+6=222$,
$7^{3}-7=336$,
$8^{3}+8=520$,
$9^{3}-9=720$.
Hence there should be 120 in place of 130 .

S207. Ans.(d)

Sol. The series is $\times 1.5+5, \times 1.5+5$, (repeated)
i.e.
$56 \times 1.5+5=89$,
$89 \times 1.5+5=\mathbf{1 3 8 . 5}$,
$138.5 \times 1.5+5=212.75$,
$212.75 \times 1.5+5=324.125$,
$324.125 \times 1.5+5=491.1875$,
Hence there should 138.5 in place of 136.5.

S208. Ans.(a)

Sol. The series is $+29,+58,+87,+116,+145, \ldots$
i.e.
$87+29=116$,
$116+58=174$,
$174+87=261$,
$261+116=377$,
$377+145=522$,
Hence there should be 377 in place of 397 .

S209. Ans.(b)

Sol. The series is
$26^{2}-6=670$,
$27^{2}+7=736$,
$28^{2}-8=776$,
$29^{2}+9=850$,
$30^{2}-10=890$,
$31^{2}+11=972, \ldots$
Hence these should be 776 in place of 792 .

S210. Ans.(a)

Sol. The series is
$273-5^{2}=248$,
$248+5^{3}=373$,
$373-6^{2}=337$,
$337+6^{3}=553$,
$553-7^{2}=504, \ldots$
Hence there should be 248 in place of 249.

S211. Ans.(e)

Sol. From (I)
R = 6\%
From (II) \& (III),
SI for 2 years $=1200$
Principal $=10 \times 1200=12000$
\therefore Amount $=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{t}}$
So, Statement II and either I or III are sufficient.

S212. Ans.(d)

Sol. From A,
$r=\frac{3 \ell}{5}, \ell=$ slant height of cone
From B,
Volume of cone $=\frac{1}{3} \pi r_{1}^{2} h=432 \mathrm{~cm}^{3}$
From C,
$\mathrm{r}_{1}=\frac{3}{4} \mathrm{a} \quad \mathrm{a}=$ side of square (unknown)
\longrightarrow Unknown
$\mathrm{h}=$ unknown
\therefore Answer cannot be found

S213. Ans.(d)

Sol. Let CP of scooter $=$ Rs x
From A, MP of scooter $=$ SP of bike
From B, SP of scooter $=115 x / 100$
From C, SP of bike $=\frac{5}{3} \times \frac{115 x}{100}$
Since, SP of bike is not known. So, answer cannot be found

S214. Ans.(d)

Sol. Let largest no. = Z
Middle No. = Y
Smallest No. $=\mathrm{X}$
From A, Z $=\mathrm{X}+12$
B, $\mathrm{X}+\mathrm{Z}=2 \mathrm{Y}$
C, Here, we don't know the sequence of odd numbers i.e. whether it is in increasing order or in decreasing order.
\therefore From all statements, we can't determine the average value

S215. Ans.(b)

Sol. Let speed of stream be $\mathrm{x} \mathrm{km} / \mathrm{hr}$.
Speed of boat in still water be $\mathrm{y} \mathrm{km} / \mathrm{hr}$.
From (I),
$x=\frac{2}{3} y$
From (II),
$x+y=\frac{20}{2}=10 \mathrm{~km} / \mathrm{hr}$
From (III),
$y-x=\frac{10}{5}=2 \mathrm{~km} / \mathrm{hr}$
So, Any two are sufficient

S216. Ans.(d)

Sol. Required no. of boys in schools C and F
$=\left(2000-\frac{2000 \times 27.5}{100}\right)+\left(1000-\frac{1000 \times 17.5}{100}\right)$
$=1450+825=2275$
\therefore Required percentage $=\frac{2275}{3000} \times 100=75.83 \%$

S217. Ans.(c)

Sol. Total no. of boys in school E
$=1250-1250 \times \frac{40}{100}$
$=1250-500=750$

S218. Ans.(a)

Sol. Required percentage $=\frac{2000}{2250} \times 100=88.88 \simeq 89 \%$

S219. Ans.(b)

Sol. Required average no.
$=\frac{\left(2500-2500 \times \frac{40}{100}\right)+\left(3000-3000 \times \frac{45}{100}\right)}{2}$
$=\frac{1500+1650}{2}$
$=\frac{3150}{2}$
$=1575$

S220. Ans.(c)

Sol. Required ratio
$=\frac{2500 \times \frac{40}{100}}{3000 \times \frac{45}{100}}=\frac{25 \times 4}{3 \times 45}=20: 27$

S221. Ans.(c)

Sol. ? = 6894

S222. Ans.(b)

Sol. ? = 81.25+2.1
$=83.35$

S223. Ans.(a)

Sol. $350 \times ? / 100 \times 1 / 50=343$
? $=4900$

S224. Ans.(a)

Sol. $1 / 2 \times 3842+15 / 100 \times ?=2449$
? $=(528 \times 100) / 15$
? $=3520$

S225. Ans.(d)

Sol. ? $=448.8 / 24$
? = 18.7

a

