4
 adda247
 publications

BODKS

Visit: publications.adda247.com \& store.adda247.com
For any information, mail us at publications@adda247.com

All India MAHA Mock: RRB PO Prelims (14 ${ }^{\text {th }}$ of July 2019) Solutions

S1. Ans.(b)
Sol. From the given statements, W sits $2^{\text {nd }}$ to the right of V. Here we get 2 possibilities i.e. Case 1 and Case 2. Three persons sit between S and W. P sits $2^{\text {nd }}$ to the left of S.

Case 1

Case 2

From the given statements, U sits $2^{\text {nd }}$ to the left of Q and sits at the middle side of the table. From this condition Case 2 is ruled out now. T is an immediate neighbor of both P and W . Both R and U are facing to each other.

S2. Ans.(a)

Sol. From the given statements, W sits $2^{\text {nd }}$ to the right of V. Here we get 2 possibilities i.e. Case 1 and Case 2. Three persons sit between S and W. P sits $2^{\text {nd }}$ to the left of S.

Case 1

From the given statements, U sits $2^{\text {nd }}$ to the left of Q and sits at the middle side of the table. From this condition Case 2 is ruled out now. T is an immediate neighbor of both P and W . Both R and U are facing to each other.

Case 2

BILINGUAL

IBPS RRB PO
PRIME
70+ TOTAL TESTS
30 Full Length Mocks 40+ Practice Tests
eBooks

S3. Ans. (e)
Sol. From the given statements, W sits $2^{\text {nd }}$ to the right of V. Here we get 2 possibilities i.e. Case 1 and Case 2. Three persons sit between S and W. P sits $2^{\text {nd }}$ to the left of S.

Case 1

From the given statements, U sits $2^{\text {nd }}$ to the left of Q and sits at the middle side of the table. From this condition Case 2 is ruled out now. T is an immediate neighbor of both P and W . Both R and U are facing to each other.

S4. Ans. (b)

Sol. From the given statements, W sits $2^{\text {nd }}$ to the right of V. Here we get 2 possibilities i.e. Case 1 and Case 2. Three persons sit between S and W. P sits $2^{\text {nd }}$ to the left of S.

Case 1
Case 2

From the given statements, U sits $2^{\text {nd }}$ to the left of Q and sits at the middle side of the table. From this condition Case 2 is ruled out now. T is an immediate neighbor of both P and W. Both R and U are facing to each other.

S5. Ans.(b)

Sol. From the given statements, W sits $2^{\text {nd }}$ to the right of V. Here we get 2 possibilities i.e. Case 1 and Case 2. Three persons sit between S and W. P sits $2^{\text {nd }}$ to the left of S.

Case 1

Case 2

From the given statements, U sits $2^{\text {nd }}$ to the left of Q and sits at the middle side of the table. From this condition Case 2 is ruled out now. T is an immediate neighbor of both P and W . Both R and U are facing to each other.

S6. Ans.(b)
Sol. I. A > L (True) II. K = Y (False)

S7. Ans.(d)
Sol. I. Q > C (True) II. W < L (True)

S8. Ans.(b)
Sol. I. F > Q (False) II. L < U (False)

S9. Ans.(c)
Sol. first, third, fourth and seventh letters of the word $=$ M, N, E and R But make no meaning full word.

S10. Ans.(b)
Sol.

S11. Ans.(d)
Sol.
From the given statements, D faces the one who sits $3^{\text {rd }}$ to the left of P. Here we have 2 possibilities i.e. Case 1 and Case 2. G is an immediate neighbor of D . Two persons sit between G and F . Case 1

From the given statements, O faces the one who sits $3^{\text {rd }}$ to the right of E. O does not sit at any of the extreme ends. Here Case 1 is ruled out now. Both Q and O are not immediate neighbors. M does not face to H .

S12. Ans.(a)
Sol.
From the given statements, D faces the one who sits $3^{\text {rd }}$ to the left of P. Here we have 2 possibilities i.e. Case 1 and Case 2. G is an immediate neighbor of D . Two persons sit between G and F .

Case 1

Case 2

Row-2
From the given statements, O faces the one who sits $3^{\text {rd }}$ to the right of E . O does not sit at any of the extreme ends. Here Case 1 is ruled out now. Both Q and 0 are not immediate neighbors. M does not face to H .

S13. Ans.(c)

Sol.
From the given statements, D faces the one who sits $3^{\text {rd }}$ to the left of P. Here we have 2 possibilities i.e. Case 1 and Case 2. G is an immediate neighbor of D. Two persons sit between G and F.

$$
\text { Case } 1
$$

Case 2

From the given statements, O faces the one who sits $3^{\text {rd }}$ to the right of E .0 does not sit at any of the extreme ends. Here Case 1 is ruled out now. Both Q and 0 are not immediate neighbors. M does not face to H .

S14. Ans.(a)

Sol. From the given statements, D faces the one who sits $3^{\text {rd }}$ to the left of P. Here we have 2 possibilities i.e. Case 1 and Case 2 . G is an immediate neighbor of D . Two persons sit between G and F .

Case 1

Case 2

From the given statements, 0 faces the one who sits $3^{\text {rd }}$ to the right of E. O does not sit at any of the extreme ends. Here Case 1 is ruled out now. Both Q and 0 are not immediate neighbors. M does not face to H .

S15. Ans.(b)
Sol. From the given statements, D faces the one who sits $3^{\text {rd }}$ to the left of P. Here we have 2 possibilities i.e. Case 1 and Case $2 . \mathrm{G}$ is an immediate neighbor of D . Two persons sit between G and F .

Case 1

Case 2

From the given statements, 0 faces the one who sits $3^{\text {rd }}$ to the right of E .0 does not sit at any of the extreme ends. Here Case 1 is ruled out now. Both Q and O are not immediate neighbors. M does not face to H .

S16. Ans.(b)
Sol. In each step one word and one number arranged together.
Like - Cherry 99
Logic: Words are arranged in alphabetical order from left to right alternate from the left end.
Numbers are arranged in decreasing order from left to right alternate from the left end.
Input: 19 cherry desert 8799 team 31 vision from 54.
Step I. cherry 9919 desert 87 team 31 vision from 54
Step II. cherry 99 desert 8719 team 31 vision from 54
Step III. cherry 99 desert 87 from 5419 team 31 vision
Step IV. cherry 99 desert 87 from 54 team 3119 vision
Step V. cherry 99 desert 87 from 54 team 31 vision 19
S17. Ans.(d)
Sol. In each step one word and one number arranged together.
Like - Cherry 99
Logic: Words are arranged in alphabetical order from left to right alternate from the left end.
Numbers are arranged in decreasing order from left to right alternate from the left end.
Input: 19 cherry desert 8799 team 31 vision from 54.
Step I. cherry 9919 desert 87 team 31 vision from 54
Step II. cherry 99 desert 8719 team 31 vision from 54
Step III. cherry 99 desert 87 from 5419 team 31 vision
Step IV. cherry 99 desert 87 from 54 team 3119 vision
Step V. cherry 99 desert 87 from 54 team 31 vision 19

S18. Ans.(a)

Sol. In each step one word and one number arranged together.
Like - Cherry 99
Logic: Words are arranged in alphabetical order from left to right alternate from the left end.
Numbers are arranged in decreasing order from left to right alternate from the left end.
Input: 19 cherry desert 8799 team 31 vision from 54.
Step I. cherry 9919 desert 87 team 31 vision from 54
Step II. cherry 99 desert 8719 team 31 vision from 54
Step III. cherry 99 desert 87 from 5419 team 31 vision
Step IV. cherry 99 desert 87 from 54 team 3119 vision
Step V. cherry 99 desert 87 from 54 team 31 vision 19

S19. Ans.(c)

Sol. In each step one word and one number arranged together.
Like - Cherry 99
Logic: Words are arranged in alphabetical order from left to right alternate from the left end.
Numbers are arranged in decreasing order from left to right alternate from the left end.
Input: 19 cherry desert 8799 team 31 vision from 54.
Step I. cherry 9919 desert 87 team 31 vision from 54
Step II. cherry 99 desert 8719 team 31 vision from 54
Step III. cherry 99 desert 87 from 5419 team 31 vision
Step IV. cherry 99 desert 87 from 54 team 3119 vision
Step V. cherry 99 desert 87 from 54 team 31 vision 19
$4^{\text {th }}$ element from left end in the final step $=87,1^{\text {st }}$ element from right end in the final step $=19$
: $87+19=106$

S20. Ans.(b)
Sol. In each step one word and one number arranged together.
Like - Cherry 99
Logic: Words are arranged in alphabetical order from left to right alternate from the left end. Numbers are arranged in decreasing order from left to right alternate from the left end.
Input: 19 cherry desert 8799 team 31 vision from 54.
Step I. cherry 9919 desert 87 team 31 vision from 54
Step II. cherry 99 desert 8719 team 31 vision from 54
Step III. cherry 99 desert 87 from 5419 team 31 vision
Step IV. cherry 99 desert 87 from 54 team 3119 vision
Step V. cherry 99 desert 87 from 54 team 31 vision 19

S21. Ans.(d)

Sol. 97159595571179533

S22. Ans.(c)
Sol. 459 and 257

S23. Ans.(d)

Sol. 684972152945952571618789538486836

S24. Ans.(a)

Sol. $17^{\text {th }}$ (left end) $-8^{\text {th }}$ (left) $=9^{\text {th }}$ from left end $=2$

S25. Ans.(c)

Sol. $7^{\text {th }}($ Left $)+9^{\text {th }}($ right end $)=16^{\text {th }}$ from right end $=1$

S26. Ans.(b)

Sol. There are four boxes are placed between box E and box C and one of them are placed either at top or at bottom. Only one box is placed between box C and box F , which placed below the box C. From these conditions we have three possible cases-

Case-	Case-	Case-
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Box	Box	Box
E	C	
	F	
		C
C	E	F
F		
		E

Three boxes are placed between box G and box H . Box H is placed neither just above nor just below box C . Only one box is placed between H and K. Not more than two boxes are placed below the box K. Box E and Box K are not placed adjacent to each other. By these conditions case- 2 and case- 3 are cancelled. So new arrangement will be-

Case-
$\mathbf{1}$
Box
E
G
C
K
F
H

BANK \& INSURANCE 2019
 PREMIUM PACKACE
 Mocks|Practice sets|eBooks

1000 Total Tests
 $500+$ eBooks

Only one box is placed between box D and B , which placed above box J. So final arrangement will be-

Box
E
B
J
D
G
C
K
F
H

S27. Ans.(a)

Sol. There are four boxes are placed between box E and box C and one of them are placed either at top or at bottom. Only one box is placed between box C and box F, which placed below the box C. From these conditions we have three possible cases-

Case-	Case-	Case-
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Box	Box	Box
E	C	
	F	
		C
C	E	F
F		
		E

Three boxes are placed between box G and box H . Box H is placed neither just above nor just below box C . Only one box is placed between H and K . Not more than two boxes are placed below the box K. Box E and Box K are not placed adjacent to each other. By these conditions case- 2 and case- 3 are cancelled. So new arrangement will be-

Case-
$\mathbf{1}$
Box
E
G
C
K
F
H

Only one box is placed between box D and B, which placed above box J. So final arrangement will be-

Box
E
B
J
D
G
C
K
F
H

S28. Ans.(b)

Sol. There are four boxes are placed between box E and box C and one of them are placed either at top or at bottom. Only one box is placed between box C and box F, which placed below the box C. From these conditions we have three possible cases-

Case-	Case-	Case-
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Box	Box	Box
E	C	
	F	
		C
C	E	F
F		
		E

Three boxes are placed between box G and box H . Box H is placed neither just above nor just below box C . Only one box is placed between H and K . Not more than two boxes are placed below the box K. Box E and Box K are not placed adjacent to each other. By these conditions case- 2 and case- 3 are cancelled. So new arrangement will be-

Case-
1
Box
E
G
C
K
F
H

Only one box is placed between box D and B , which placed above box J. So final arrangement will be-

Box
E
B
J
D
G
C
K
F
H

S29. Ans.(c)

Sol. There are four boxes are placed between box E and box C and one of them are placed either at top or at bottom. Only one box is placed between box C and box F, which placed below the box C. From these conditions we have three possible cases-

Case-	Case-	Case-
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Box	Box	Box
E	C	
	F	
		C
C	E	F
F		
		E

Three boxes are placed between box G and box H . Box H is placed neither just above nor just below box C . Only one box is placed between H and K. Not more than two boxes are placed below the box K. Box E and Box K are not placed adjacent to each other. By these conditions case- 2 and case- 3 are cancelled. So new arrangement will be-

Case-
$\mathbf{1}$
Box
E
G
C
K
F
H

Only one box is placed between box D and B, which placed above box J. So final arrangement will be-

Box
E
B
J
D
G
C
K
F
H

S30. Ans. (d)

Sol. There are four boxes are placed between box E and box C and one of them are placed either at top or at bottom. Only one box is placed between box C and box F, which placed below the box C. From these conditions we have three possible cases-

Case-	Case-	Case-
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Box	Box	Box
E	C	
	F	
		C
C	E	F
F		
		E

Three boxes are placed between box G and box H . Box H is placed neither just above nor just below box C . Only one box is placed between H and K. Not more than two boxes are placed below the box K. Box E and Box K are not placed adjacent to each other. By these conditions case- 2 and case- 3 are cancelled. So new arrangement will be-

Case-
$\mathbf{1}$
Box
E
G
C
K
F
H

Only one box is placed between box D and B , which placed above box J. So final arrangement will be-

BILINGUAL
 IBPS RRB CLERK PRIME
 70+ TOTAL TESTS
 30 Full Length Mocks
 40+ Practice Tests
 eBooks

S31. Ans.(d)

Sol.
From I and II it is not clear that how many brother J have.

S32. Ans.(a)

Sol. From I it is clear that C gets the lowest marks.
$B / E / F>B / E / F>B / E / F>A / D>A / D>C$

S33. Ans.(b)

Sol. From II it is clear that Rohan's marriage anniversary is on $21^{\text {st }}$ March.

S34. Ans.(e)

Sol. From I and II it is clear that 'never' will coded as 'ke'.

S35. Ans.(e)

Sol. From I and II-
D's position from right end $=6+12+1=19^{\text {th }}$

S36. Ans.(c)

Sol. There are more than three students have exam after A. Only one student has exam between A and H. From these conditions we have four possible cases-

	Case-1	Case-2	Case- 3	Case- 4
Day	Student	Student	Student	Student
Monday	H			A
Tuesday			A	
Wednesday	A	A		H
Thursday			H	
Friday		H		
Saturday				
Sunday				

G has exam before H but not immediate before H . By this condition case- 1 and case- 4 are cancelled. There are three students have exam between G and B. So new arrangement will be-

	Case-2	Case-3
Day	Student	Student
Monday		G
Tuesday	G	A
Wednesday	A	
Thursday		H
Friday	H	B
Saturday	B	
Sunday		

There are three students have exam between D and E , who does not have exam in the last day of week. By this condition case- 2 is cancelled. So final arrangement will be-

Day	Student
Monday	G
Tuesday	A
Wednesday	E
Thursday	H
Friday	B
Saturday	L
Sunday	D

S37. Ans.(d)

Sol. There are more than three students have exam after A. Only one student has exam between A and H. From these conditions we have four possible cases-

	Case- 1	Case- 2	Case- 3	Case-4
Day	Student	Student	Student	Student
Monday	H			A
Tuesday			A	
Wednesday	A	A		H
Thursday			H	
Friday		H		
Saturday				
Sunday				

G has exam before H but not immediate before H . By this condition case-1 and case- 4 are cancelled. There are three students have exam between G and B. So new arrangement will be-

	Case-2	Case-3
Day	Student	Student
Monday		G
Tuesday	G	A
Wednesday	A	
Thursday		H
Friday	H	B
Saturday	B	
Sunday		

There are three students have exam between D and E, who does not have exam in the last day of week. By this condition case- 2 is cancelled. So final arrangement will be-

Day	Student
Monday	G
Tuesday	A
Wednesday	E
Thursday	H
Friday	B
Saturday	L
Sunday	D

S38. Ans.(b)
Sol. There are more than three students have exam after A. Only one student has exam between A and H. From these conditions we have four possible cases-

	Case- 1	Case- 2	Case- 3	Case-4
Day	Student	Student	Student	Student
Monday	H			A
Tuesday			A	
Wednesday	A	A		H
Thursday			H	
Friday		H		
Saturday				
Sunday				

G has exam before H but not immediate before H . By this condition case- 1 and case- 4 are cancelled. There are three students have exam between G and B. So new arrangement will be-

	Case-2	Case-3
Day	Student	Student
Monday		G
Tuesday	G	A
Wednesday	A	
Thursday		H
Friday	H	B
Saturday	B	
Sunday		

There are three students have exam between D and E, who does not have exam in the last day of week. By this condition case- 2 is cancelled. So final arrangement will be-

Day	Student
Monday	G
Tuesday	A
Wednesday	E
Thursday	H
Friday	B
Saturday	L
Sunday	D

S39. Ans.(a)

Sol. There are more than three students have exam after A. Only one student has exam between A and H. From these conditions we have four possible cases-

	Case- 1	Case- 2	Case- 3	Case- 4
Day	Student	Student	Student	Student
Monday	H			A
Tuesday			A	
Wednesday	A	A		H
Thursday			H	
Friday		H		
Saturday				
Sunday				

G has exam before H but not immediate before H . By this condition case- 1 and case- 4 are cancelled. There are three students have exam between G and B. So new arrangement will be-

	Case- 2	Case- 3
Day	Student	Student
Monday		G
Tuesday	G	A
Wednesday	A	
Thursday		H
Friday	H	B
Saturday	B	
Sunday		

There are three students have exam between D and E , who does not have exam in the last day of week. By this condition case- 2 is cancelled. So final arrangement will be-

Day	Student
Monday	G
Tuesday	A
Wednesday	E
Thursday	H
Friday	B
Saturday	L
Sunday	D

S40. Ans.(e)

Sol. There are more than three students have exam after A. Only one student has exam between A and H. From these conditions we have four possible cases-

	Case-1	Case-2	Case-3	Case-4
Day	Student	Student	Student	Student
Monday	H			A
Tuesday			A	
Wednesday	A	A		H
Thursday			H	
Friday		H		
Saturday				
Sunday				

G has exam before H but not immediate before H. By this condition case- 1 and case- 4 are cancelled. There are three students have exam between G and B. So new arrangement will be-

	Case-2	Case-3
Day	Student	Student
Monday		G
Tuesday	G	A
Wednesday	A	
Thursday		H
Friday	H	B
Saturday	B	
Sunday		

There are three students have exam between D and E , who does not have exam in the last day of week. By this condition case- 2 is cancelled. So final arrangement will be-

Day	Student
Monday	G
Tuesday	A
Wednesday	E
Thursday	H
Friday	B
Saturday	L
Sunday	D

S41. Ans.(b)

Sol.
Price of each children pass in
$\mathrm{W} 1=\frac{100000}{(240+260)}=R s .200$
Required $\%=\frac{200}{800} \times 100=25 \%$

S42. Ans.(d)

Sol.
Female senior citizen who visited
waterpark in W1 $=240 \times \frac{50}{100}=120$
Required $\%=\frac{(120+180)-240}{(120+180)} \times 100$
$=\frac{60}{300} \times 100=20 \%$

S43. Ans.(c)

Sol.
Total adult who visited waterpark
in W1 $=180 \times \frac{100}{72}=250$
Required amount $=250 \times 800=$ Rs. 200000

BANK \& INSURANCE 2019
 PREMIUM PACKACE
 Mocks | Practice sets |eBooks

1000 Total Tests
$500+$ eBooks
Validity: 12 Months | Bilingual

S44. Ans.(c)

Sol.
Female adult who visited waterpark in W1 $=260 \times \frac{5}{13}=100$
Male adult who visited waterpark in W1 $=100 \times \frac{3}{2}=150$
Required number of males $=240+150+180=570$

S45. Ans.(e)

Sol.

Required ratio $=\frac{\left(\frac{240+180}{2}\right)}{(260+160)}$
$=\frac{210}{420}=1: 2$

S46. Ans.(b)

Sol. Wrong number $=2030$
Pattern of series -

So, there should be 2025 in place of 2030 .

S47. Ans.(d)

Sol. Wrong number = 10

So, there should be 12 in place of 10 .

S48. Ans.(a)

Sol. Wrong number $=318$
Pattern of series -

So, there should be 320 in place of 318 .

S49. Ans.(d)

Sol. Wrong number $=820$
Pattern of series -

So, there should be 825 in place of 820 .

S50. Ans.(b)

Sol.
Wrong number $=285$
Pattern of series -

So, there should be 286 in place of 285 .

S51. Ans.(c)

Sol.

Let cost price of the article be Rs.100x.
So, marked price of the article $=100 x \times \frac{135}{100}=R s .135 x$
and let selling price of the article be Rs.y.

From I:

ATQ,
$(135 x-y)-(y-100 x)=190$
$135 \mathrm{x}-\mathrm{y}-\mathrm{y}+100 \mathrm{x}=190$
$235 \mathrm{x}-2 \mathrm{y}=190$ \qquad
From II:
$\frac{y}{135 x}=\frac{4}{5}$
$\Rightarrow \mathrm{y}=108 \mathrm{x}$ \qquad (ii)

On solving (i) \& (ii), we get:
$\mathrm{x}=10$
So, cost price of the article $=$ Rs. 100 x
= Rs. 1000
Hence, both statements taken together are necessary to answer the question.

S52. Ans.(a)

Sol.
Let efficiency of Dharam be ' 5 x units/day'.
So, efficiency of Deepak $=5 x \times \frac{80}{100}$
= ' 4 x units/day'
Now, let efficiency of Shivam be ' y units/day'.
From I:

So,
$5 \mathrm{x}+\mathrm{y}=15$ \qquad
$4 x+y=14$ \qquad (ii)

On solving (i) \& (ii), we get:
$\mathrm{x}=1, \mathrm{y}=10$
So, efficiency of Shivam = 10 units/day
From II:
ATQ,
$y \times \frac{40}{100}=4 x$
$\mathrm{y}=10 \mathrm{x}$
Total work $=80 \times 5 \mathrm{x}=400 \mathrm{x}$ units
Hence, statement I alone is sufficient to answer the question.

S53. Ans.(c)

Sol.
Amount invested by Asif in scheme $-A=80000 \times \frac{5}{8}=R s .50000$
Amount invested by Asif in scheme - B $=80000 \times \frac{3}{8}=R s .30000$
From I \& II:
Let rate of interest offered by scheme - B be 2R\% p.a.
So, rate of interest offered by scheme $-\mathrm{A}=2 R \times \frac{1}{2}=R \%$ p.a.
ATQ,
$\frac{30000 \times 2 R \times 4}{100}-\frac{50000 \times R \times 4}{100}=6000$
$\Rightarrow 2400 \mathrm{R}-2000 \mathrm{R}=6000$
$400 \mathrm{R}=6000$
R = 15\%
So, total interest received by Asif $=\frac{30000 \times 2 \times 15 \times 4}{100}+\frac{50000 \times 15 \times 4}{100}$
$=36000+30000$
$=$ Rs. 66000
So, both statements together are necessary to answer the question.

S54. Ans.(d)

Sol. Let present age of Aman, Bhanu and Chaman be 'x years', 'y years' \& 'z years' respectively.
So, $x+y+z=34 \times 3$
$x+y+z=102$ \qquad (i)

From I:
$x=z \times \frac{200}{100}$
$\mathrm{x}=2 \mathrm{z}$ \qquad
And, $\frac{y+6}{z}=\frac{3}{2}$
$2 \mathrm{y}+12=3 \mathrm{z}$
$2 \mathrm{y}=3 \mathrm{z}-12$
$y=\frac{3 z-12}{z}$ \qquad
On solving (i), (ii) \& (iii), we get:
$z=24$ years
From II:
$x+y=78$ \qquad (iv)

On solving (i) \& (iv), we get:
z $=24$ years
Hence, either statement I alone or statement II
alone is sufficient to answer the question.

S55. Ans.(c)

Sol.
Let length of train - A \& train - B be
' $4 x$ ' \& 5 x ' meters respectively.

From I \& II:

Let speed of train - A \& train - B be
' $\mathrm{V}_{1} \mathrm{~m} / \mathrm{sec}^{\prime}$ \& ' $\mathrm{V}_{2} \mathrm{~m} / \mathrm{sec}^{\prime}$ respectively.
ATQ,
$\frac{4 x+500}{28}=V_{1}$ \qquad (i)

And, $\frac{4 x+5 x}{54}=V_{1}-V_{2}$ \qquad (ii)

Put value of (i) in (ii):
$\frac{9 x}{54}=\frac{4 x+500}{28}-V_{2}$
$\Rightarrow V_{2}=\frac{x+125}{7}-\frac{x}{6}$
$V_{2}=\frac{6 x+750-7 x}{42}$
$V_{2}=\frac{750-x}{42}$
And, $\frac{5 x}{15}=V_{2}$
$V_{2}=\frac{x}{3}$ \qquad
On solving (ii) \& (iii), we get:
$\mathrm{x}=50$
Put value of x in (i):
$\frac{200+500}{28}=V_{1}$
$\Rightarrow \mathrm{V}_{1}=25 \mathrm{~m} / \mathrm{sec}$
Hence, both statements taken together are necessary to answer the question.

S56. Ans.(c)
Sol.
Female employees in company - $\mathrm{C}=\frac{120}{100} \times\left[\frac{\frac{(14+18)}{100} \times 5000}{2}\right]$
$=\frac{120}{100} \times \frac{1350}{2}=810$
Male employees in company - $B=\frac{36}{100} \times 5000=1800$
Required difference $=1800-810=990$

S57. Ans.(e)

Sol.
Female employees in company - C
$=\frac{25}{100} \times \frac{36}{100} \times 5000=450$
Female employees in company - A
$=450 \times \frac{9}{5}=810$
Required female employees $=810+450=1260$

S58. Ans.(b)

Sol.
Male employees in company - D \& E together
$=\frac{(13+17)}{100} \times 5000=1500$
Male employees in company - B \& C together
$=\frac{(36+14)}{100} \times 5000=2500$
Required $\%=\frac{2500-1500}{2500} \times 100$
$=\frac{1000}{2500} \times 100=40 \%$

S59. Ans.(b)

Sol.
Let female employees in company - E be x .
So, female employees in company - C = $\mathrm{x}+50$
ATQ,
$\mathrm{x}+\mathrm{x}+50=725 \times 2$
$2 \mathrm{x}+50=1450$
$\Rightarrow \mathrm{x}=700$
Hence, female employees in company - C $=x+50=750$
Now, male employees in company - $A=\frac{20}{100} \times 5000=1000$
Required $\%=\frac{750}{1000} \times 100=75 \%$

S60. Ans.(a)
Sol.
Female employees in company - $\mathrm{E}=\frac{36}{100} \times 5000 \times \frac{7}{10}=1260$
Male employees in company - $\mathrm{E}=\frac{17}{100} \times 5000=850$
Required employees $=1260+850=2110$

S61. Ans.(a)

Sol.
Required probability $=\frac{4 c_{1} \times 48}{52 c_{c_{1}}}+\frac{4 c_{2}}{52 c_{2}}$
$=\frac{32}{221}+\frac{1}{221}=\frac{33}{221}$

EPFO PRIME ASSISTANT 2019

65 TOTAL TESTS

- 15 Full Length Mocks
- 30 Section wise Practice Sets - 20 Topic wise Practice Sets - eBooks

On solving (i) \& (ii), we get:
$\mathrm{b}=18[\because$ length is always greater than breadth]
\& $1=24$
Now, circumscribing circle of maximum possible area can only be drawn when diameter of the circle
is equal to diagonal of the rectangle.
So, radius of the circle $=\frac{1}{2} \times\left(\sqrt{l^{2}+b^{2}}\right)$
$=\frac{1}{2} \times \sqrt{900}$
$=15 \mathrm{~cm}$
So, circumference of the circle $=2 \times \frac{22}{7} \times 15$
$=\frac{660}{7} \mathrm{~cm}$
$=94 \frac{2}{7} \mathrm{~cm}$

S63. Ans.(d)

Sol.
Let length and speed of train - A be 'l
meters' and ' V m/sec' respectively.
ATQ,
$=\frac{l+240}{11}=V$ \qquad
And, $\frac{l}{5}=V$ \qquad
On solving (i) \& (ii), we get:
$\frac{l+240}{11}=\frac{l}{5}$
$5 l+1200=111$
$\Rightarrow \mathrm{l}=200 \mathrm{~m}$ \qquad
Put value of (iii) in (ii):
$\mathrm{V}=40 \mathrm{~m} / \mathrm{sec}$
So, length of train $-B=1+160=360 \mathrm{~m}$
And speed of train $-B=40 \times \frac{100}{160}=25 \mathrm{~m} / \mathrm{sec}$
Hence, required time $=\frac{360+200}{40-25}=\frac{560}{15}$ seconds $=37 \frac{1}{3}$ seconds

S64. Ans.(e)

Sol.

Let total quantity of mixture -A be 50 x liters.
So, total quantity of mixture $-B=50 x \times \frac{5}{2}=125 x$ liters
ATQ,
$50 x \times \frac{4}{5}+125 x \times \frac{17}{25}=75$
$40 \mathrm{x}+85 \mathrm{x}=75$
$125 x=75$
$\mathrm{x}=0.6$
Required difference $=\left(50 x \times \frac{1}{5}+125 x \times \frac{8}{25}\right)-50 x \times \frac{1}{5}$
$=40 \mathrm{x}$
= 24 liters

S65. Ans.(a)

Sol.

Let present age of R be x years.
So, present age of $Q=(x+18)$ years
And, present age of $S=(x+18+6)$
$=(x+24)$ years
And, present age of $\mathrm{P}=\left[(x+24) \times \frac{200}{300}\right]$ years
$=\left(\frac{2 x}{3}+16\right)$ years
ATQ,
$\left(\frac{2 x}{3}+16\right)+x=33 \times 2$
$\Rightarrow \frac{2 x+3 x}{3}=66-16$
$\Rightarrow \frac{5 x}{3}=50$
$\Rightarrow \mathrm{x}=30$ years
Required average $=\frac{(x+18)+x+(x+24)}{3}$
$=\frac{3 x+42}{3}$
$=x+14$
$=44$ years

S66. Ans.(b)
Sol.
$\frac{62.5}{100} \times 1000+(5)^{2} \approx ? \times 26$
$625+25 \approx ? \times 26$
$? \approx \frac{650}{26} \approx 25$

S67. Ans.(d)

Sol.
$\frac{?}{100} \times\left\{(26)^{2}-19 \times 4\right\} \approx 1818$
$\frac{?}{100} \times\{676-76\} \approx 1818$
\Rightarrow ? $\times 6 \approx 1818$
? ≈ 303

S68. Ans.(a)

Sol.
$35 \times 50 \times \frac{1}{175} \approx ?-\frac{20}{100} \times 1700$
? $\approx 10+340$
$? \approx 350$

S69. Ans.(c)

Sol.
$(54)^{2}-(12)^{3}+(18)^{2} \approx$?
? $\approx 2916-1728+324$
? $\approx 3240-1728$
? ≈ 1512

S70. Ans.(b)

Sol.

$$
\begin{aligned}
& \frac{1696}{\left(\frac{?}{100} \times 800\right)}+\sqrt{1024} \approx 58.5 \\
& \frac{212}{?}+32 \approx 58.5 \\
& \frac{212}{?} \approx 26.5 \\
& ? \approx \frac{212}{26.5} \\
& ? \approx 8
\end{aligned}
$$

S71. Ans.(c)

Sol.
Quantity I:
$\mathrm{x}^{2}-16 \mathrm{x}+63=0$
$\mathrm{x}^{2}-9 \mathrm{x}-7 \mathrm{x}+63=0$
$x(x-9)-7(x-9)=0$
$(x-9)(x-7)=0$
$\mathrm{x}=7,9$
Quantity II:
$\mathrm{y}^{2}-12 \mathrm{y}+35=0$
$\mathrm{y}^{2}-7 \mathrm{y}-5 \mathrm{y}+35=0$
$y(y-7)-5(y-7)=0$
$(y-7)(y-5)=0$
$y=5,7$
So, Quantity I \geq Quantity II.

S72. Ans.(a)

Sol.
Quantity I:
Let speed of boat in still water be 'x km/hr.'
ATQ,
$\frac{90}{(x+6)}+\frac{90}{(x-6)}=8$
$\frac{90 x-540+90 x+540}{\left(x^{2}-36\right)}=8$
$\frac{180 x}{x^{2}-36}=8$
$45 \mathrm{x}=2 \mathrm{x}^{2}-72$
$0=2 x^{2}-45 \mathrm{x}-72$
$0=2 x^{2}-48 \mathrm{x}+3 \mathrm{x}-72$
$0=2 x(x-24)+3(x-24)$
$0=(x-24)(2 x+3)$
$\mathrm{x}=24,-3 / 2$
So, speed of boat in still water $=24 \mathrm{~km} / \mathrm{hr}$.

Quantity II:

Let speed of boat in still water be ' $\mathrm{xkm} / \mathrm{hr}$.'
ATQ,
$\frac{63}{(x-6)}-\frac{63}{(x+6)}=4$
$63\left[\frac{x+6-x+6}{x^{2}-36}\right]=4$
$\Rightarrow 756=4 \mathrm{x}^{2}-144$
$\Rightarrow 4 \mathrm{x}^{2}=900$
$\mathrm{x}^{2}=225$
$\mathrm{x}= \pm 15$
So, speed of boat in downstream $=x+6=21 \mathrm{~km} / \mathrm{hr}$.
So, Quantity I > Quantity II.

S73. Ans.(e)

Sol.
Quantity I:
$18 \mathrm{x}^{2}-27 \mathrm{x}+10=0$
$18 \mathrm{x}^{2}-15 \mathrm{x}-12 \mathrm{x}+10=0$
$3 x(6 x-5)-2(6 x-5)=0$
$(6 x-5)(3 x-2)=0$
$x=\frac{2}{3}, \frac{5}{6}$
Quantity II:
$28 y^{2}-45 y+18=0$
$28 y^{2}-24 y-21 y+18=0$
$4 y(7 y-6)-3(7 y-6)=0$
$(7 y-6)(4 y-3)=0$
$y=\frac{6}{7}, \frac{3}{4}$
So, no relation can be established between Quantity I and Quantity II.

S74. Ans.(b)

Sol.
Quantity I:
Factors of $28=1,2,4,7,14,28$
Required sum $=1+2+4+7+14+28=56$
Quantity II:
Factors of $24=1,2,3,4,6,8,12,24$
Required sum $=1+2+3+4+6+8+12+24=60$
So, Quantity I < Quantity II.

S75. Ans.(b)

Sol.
Let radius and height of cylindrical pipe be
' rcm ' and ' 4 r cm ' respectively.
ATQ,
Volume of cylindrical pipe $=4312 \mathrm{~cm}^{3}$
$\frac{22}{7} \times r^{2} \times(4 r)=4312$

Complete Package
10 IBPS RRB PO PRE

$$
\begin{aligned}
& r^{3}=\frac{4312 \times 7}{22 \times 4} \\
& r^{3}=343 \\
& r=7
\end{aligned}
$$

Now, let height of conical tent be ' hcm '.
Volume of conical tent $=1232 \mathrm{~cm}^{3}$
$\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times h=1232$
$h=\frac{1232 \times 7 \times 3}{22 \times 7 \times 7}$
$\mathrm{h}=24 \mathrm{~cm}$

Quantity I:

Slant height of conical tent $=\sqrt{r^{2}+h^{2}}$
$=\sqrt{(7)^{2}+(24)^{2}}$
$=\sqrt{49+576}$
$=25 \mathrm{~cm}$

Quantity II:

Height of cylindrical pipe $=4 \mathrm{r}$
$=28 \mathrm{~cm}$
So, Quantity I < Quantity II.

S76. Ans.(c)

Sol.

According to question
$\frac{4}{5} \times 80-\frac{4}{5} x=\frac{1}{5} \times 80-\frac{1}{5} x+x$
$64-\frac{4}{5} x=16-\frac{1}{5} x+x$
$48=\frac{4}{5} x-\frac{1}{5} x+x$
$48=\frac{3 x}{5}+x$
$x=30 \ell$
Or
$\frac{4}{5} \times 80-\frac{4}{5} x=40$ (because final concentration is 50%)
$x=30 \ell$

S77. Ans. (a)

Sol.

Two day work of $\mathrm{A}=\frac{2}{10}=\frac{1}{5}$
Remaining work $=\frac{4}{5}$
One day work of B and $C=\frac{20+15}{15 \times 20}=\frac{35}{15 \times 20}=\frac{7}{60}$
$\frac{4}{5}$ of work will be finished in $\frac{60}{7} \times \frac{4}{5}$ day
$=\frac{48}{7}$ days

S78. Ans.(a)

Sol.
Required Probability $=\frac{5}{23}+\frac{8}{23}=\frac{13}{23}$

S79. Ans.(b)

Sol.

Let width of the rectangle be 5 x cm then its length $=6 \mathrm{x} \mathrm{cm}$ $6 x \times 5 x=4320$
$30 x^{2}=4320$
$x=12$
Length of diagonal $=\sqrt{(6 \times 12)^{2}+(5 \times 12)^{2}}=12 \sqrt{61} \mathrm{~cm}$

S80. Ans.(c)
Sol.
$B-A=6$
$\left\{\begin{array}{l}\text { Let } A^{\prime} \text { s age is } \rightarrow A \\ \text { Let } B^{\prime} \text { sage is } \rightarrow B \\ \text { Let } C^{\prime} \text { s age is } \rightarrow C\end{array}\right.$
$\frac{B+9}{C}=\frac{9}{8}$
$9 \mathrm{C}-8 \mathrm{~B}=72$
$\mathrm{C}=2 \mathrm{~A}$
(ii) \& (iii)
$\Rightarrow 18 \mathrm{~A}-8 \mathrm{~B}=72$
$\Rightarrow 18(\mathrm{~B}-6)-8 \mathrm{~B}=72 \quad[\because A=B-6 \ldots(i)]$
$10 B=180$
$B=18$ year
After 5 years B's age $=23$ years

