Number System

1. L.C.M. and H.C.F. of Fractions
L. C. $\mathrm{M}=\frac{\text { L.C.M.of the numbers in numerators }}{\text { H.C.F.of in the number in denominator }}$
H. C.F $=\frac{\text { H.C.F.of the numbers in numerators }}{\text { L.C.M.of in the number in denominator }}$
2. Product of two numbers
$=$ L.C.M. of the numbers \times H.C.F. of the numbers
3. To find the greatest number that will exactly divide x, y and z .
Required number $=$ H.C.F. of x, y and z.
4. To find the greatest number that will divide x, y and z leaving remainders a, b and c, respectively.
Required number $=$ H.C.F. of $(x-a),(y-b)$ and $(z-c)$.
5. To find the least number which is exactly divisible by x, y and z .
Required number $=$ L.C.M. of x, y and z .
6. To find the least number which when divided by x, y and z leaves the remainders a, b and c, respectively. It is always observed that $(x-a)=(y-b)=(z-c)=k$ (say)
\therefore Required number $=($ L.C.M. of x, y and z$)-\mathrm{k}$.
7. To find the least number which when divided by x, y and z leaves the same remainder r in each case.
Required number $=($ L.C.M. of x, y and $z)+r$
8. To find the greatest number that will divide x, y and z leaving the same remainder in each case.
(A) When the value of remainder r is given: Required number $=$ H.C.F. of $(x-r),(y-r)$ and $(z-r)$.
(B) When the value of remainder is not given:

Required number $=$ H.C.F. of $|(x-y)|,|(y-z)|$ and $\mid(z-$ $\mathrm{x}) \mid$
9. To find the n -digit greatest number which, when divided by x, y and z .
(A) leaves no remainder (i.e., exactly divisible)

Step 1: L.C.M. of x, y and $\mathrm{z}=\mathrm{L}$
Step 2: $\frac{\bar{L}) \mathrm{n} \text {-digit greatest number(}}{\text { Remainder }=R}$
Step 3: Required number $=\mathrm{n}$-digit greatest number -R
(B) leaves remainder K in each case.

Required number $=(n$-digit greatest number $-R)+K$.
10. To find the n-digit smallest number which when divided by x, y and z.
(A) leaves no remainder (i.e., exactly divisible)

Step 1: L.C.M. of x, y and $\mathrm{z}=\mathrm{L}$
Step 2: $\frac{\overline{\mathrm{L}) \mathrm{n} \text {-digit smallest number }}}{\text { Remainder }=R}$
Step 3: Required number = n-digit smallest number $+(\mathrm{L}$ - R).
(B) leaves remainder K in each case.

Required number $=\mathrm{n}$-digit smallest number $+(\mathrm{L}-\mathrm{R})+$ k.

Properties of Centers of Triangle

- Centroid :

- Centroid divides median of a triangle in ratio $2: 1$
$\rightarrow \frac{\mathrm{AG}}{\mathrm{GE}}=\frac{2}{1}$
$\rightarrow \frac{\mathrm{AG}}{\mathrm{AE}}=\frac{2}{3}$
$\rightarrow \frac{\mathrm{GE}}{\mathrm{AE}}=\frac{1}{3}$
- \quad area $\triangle \mathrm{ABE}=\frac{1}{2}$ area $\triangle \mathrm{ABC}$
- area $\triangle \mathrm{AGB}=\frac{1}{3}$ area $\Delta \mathrm{ABC}$
- area $\triangle \mathrm{AGF}=\frac{1}{6}$ area $\triangle \mathrm{ABC}$

- $\mathrm{OG}=\frac{1}{3} \mathrm{AO}$
- $\mathrm{AB}^{2}+\mathrm{BC}^{2}=2 \mathrm{BD}^{2}+\frac{1}{2} \mathrm{AC}^{2}$
- $\mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AE}^{2}+\frac{1}{2} \mathrm{BC}^{2}$
- $\mathrm{CA}^{2}+\mathrm{CB}^{2}=\frac{1}{2} \mathrm{AB}^{2}+2 \mathrm{FC}^{2}$

- Area $\triangle \mathrm{FGE}=\frac{1}{12}$ area $\Delta \mathrm{ABC}$
- $3 \times$ (sum of side square) $=4 x$ (sum of median square) $3 \times\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{AC}^{2}\right)=4 \mathrm{x}\left(\mathrm{AE}^{2}+\mathrm{BD}^{2}+\mathrm{CF}^{2}\right)$
- area $\Delta \mathrm{ABC}=\frac{4}{3}$ area Δ (Formed by taking $\mathrm{AD}, \mathrm{BF}, \mathrm{CE}$, as sides of a triangle)
> Incenter \rightarrow [Intersecting Point of Internal angle bisector]

$\rightarrow \angle \mathrm{BIC}=90^{\circ}+\frac{\angle \mathrm{A}}{2}$
\rightarrow IB $=$ Inradius, $r=\frac{\text { area } \triangle \mathrm{ABC}}{\mathrm{s}}$
$\rightarrow \mathrm{AI}: \mathrm{ID}=\mathrm{b}+\mathrm{c}: \mathrm{a}$

\rightarrow Circumcenter: \rightarrow [Intersecting point of Perpendicular bisector]

$\mathrm{SB}=$ circumradius, $\mathrm{R}=\frac{\mathrm{abc}}{4 \times \operatorname{area} \Delta \mathrm{ABC}}$
> Orthocenter: \rightarrow [Intersecting Point of Altitudes]

$\angle B O C=180-\angle B A C$
$>$ Important Points: -
(a) Orthocenter of right angled triangle \Rightarrow at right angled vertex
(b) Circumcenter of right angled triangle \Rightarrow Mid-point of Hypotenuse
(c) Distance b / w incenter \& circumcenter of a triangle
$=\sqrt{R^{2}-2 r R} \quad\left[\begin{array}{l}R=\text { circumradius } \\ r=\text { incente }\end{array}\right]$
(d) In Equilateral triangle,
$\mathrm{R}=2 \mathrm{r}$,
Circum Radius: Inradius
2 : 1
Properties of Triangle

If $D E|\mid B C$. Then,
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{AD}}=\frac{\mathrm{DE}}{\mathrm{EC}}$
$\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AE}}{\mathrm{AC}}$
$>$

$\frac{\mathrm{a}}{\sin \mathrm{A}}=\frac{\mathrm{b}^{\mathrm{a}}}{\sin \mathrm{B}}=\frac{\mathrm{c}}{\sin \mathrm{C}}=2 R(\mathrm{R}=$ Circumcenter $)$
$a: b: c \simeq \sin A: \sin B: \sin C$
$>$ If F, D \& E are midpoints of $\mathrm{AB}, \mathrm{BC} \& \mathrm{AC}$

Then,
$\rightarrow \mathrm{FE} \| \mathrm{BC} \& \mathrm{FE}=\frac{1}{2} \mathrm{BC}$
$\rightarrow \mathrm{FD} \| \mathrm{AC} \& \mathrm{FD}=\frac{1}{2} \mathrm{AC}$
$\rightarrow \mathrm{ED} \| \mathrm{AB} \& \mathrm{ED}=\frac{1}{2} \mathrm{AB}$
\rightarrow Area of $\triangle \mathrm{DFE}=\frac{1}{4}$ area $\triangle \mathrm{ABC}$
$>$ In, Isosceles triangle , $\mathrm{AB}=\mathrm{AC}$

If $\mathrm{E} \& \mathrm{~F}$ are mid points Then, EC = BF
$>$ In, Isosceles triangle, $\mathrm{AB}=\mathrm{AC} \& \mathrm{BE}=\mathrm{CD}$

Then, $\mathrm{AD}=\mathrm{AE}$

In a Right triangle, If M is the mid point of AC
AM = MC
then (तो)
$\mathrm{BM}=\frac{1}{2} \mathrm{AC}$

(a) In a Right-angle Triangle If AL \& CM are medians then $4\left(A L^{2}+C M^{2}\right)=5 A C^{2}$
(b) If $\mathrm{M} \& \mathrm{~L}$ are points anywhere on $\mathrm{AB} \& \mathrm{BC}$ then $A L^{2}+C M^{2}=A C^{2}+M L^{2}$

TRIGONOMETRY

Important Results :-

- If $\tan \alpha \cdot \tan \beta=1$ then $\alpha+\beta=90^{\circ}$
- If $\sin \alpha \cdot \sec \beta=1$ then $\alpha+\beta=90^{\circ}$
- If $\cos \alpha \cdot \operatorname{cosec} \beta=1$ then $\alpha+\beta=90^{\circ}$
- If $\cot \alpha \cdot \cot \beta=1$ then $\alpha+\beta=90^{\circ}$
- If $\sin \alpha \cdot \operatorname{cosec} \beta=1$ then $\alpha+\beta=180^{\circ}$
- $\sin ^{2} \theta+\cos ^{2} \theta=1, \sin ^{2} \theta=1-\cos ^{2} \theta \& \cos ^{2} \theta=1-\sin ^{2}$ θ
- $\sec ^{2} \theta-\tan ^{2} \theta=1, \sec ^{2} \theta=1+\tan ^{2} \theta \& \tan ^{2} \theta=\sec ^{2} \theta-$ 1
- $\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1, \operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta \& \cot ^{2} \theta=$ $\operatorname{cosec}^{2} \theta-1$
- If $\sin ^{2} \alpha+\sin ^{2} \beta=2$ or $\sin \alpha+\sin \beta=2$, then $\alpha=\beta=90^{\circ}$
- If $\sin ^{2}+\cos ^{2} \beta=2$ or $\sin \alpha+\cos \beta=2$, then $\alpha=90^{\circ} \& \beta=$ 0°
- if $\cos ^{2} \alpha+\cos ^{2} \beta=2$ or $\cos \alpha+\cos \beta=2$, then $\alpha=\beta=0^{\circ}$
- $\sin ^{2} \alpha+\sin ^{2} \beta=0$ when $\alpha=\beta=0$
- $\sin ^{2} \alpha+\cos ^{2} \beta=0$ when $\alpha=0 \& \beta=90^{\circ}$
- $\cos ^{2} \alpha+\cos ^{2} \beta=0$ when $\alpha=\beta=90^{\circ}$

Important Formulas

- $\quad \sin (A+B)=\sin A \cos B+\cos A \sin B$
- $\quad \sin (A-B)=\sin A \cos B-\cos A \sin B$
- $\quad \cos (A+B)=\cos A \cos B-\sin A \sin B$
- $\quad \cos (A-B)=\cos A \cos B+\sin A \sin B$
- $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
- $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$
- $\quad \sin 2 A=2 \sin A \cos A=\frac{2 \sin A}{\cos A} \cdot \cos ^{2} A=\frac{2 \tan A}{\sec ^{2} A}=\frac{2 \tan A}{1+\tan ^{2} A}$
- $\quad \cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A$ $=\cos ^{2} \mathrm{~A}\left(1-\frac{\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}}\right)=\frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}$
- $\quad \tan 2 \mathrm{~A}=\frac{2 \tan \mathrm{~A}}{1-\tan ^{2} \mathrm{~A}}$
- $2 \sin A \cos B=\sin (A+B)+\sin (A-B)$
- $2 \cos A \sin B=\sin (A+B)-\sin (A-B)$
- $2 \cos A \cos B=\cos (A+B)+\cos (A-B)$
- $2 \sin A \sin B=\cos (A-B)-\cos (A+B)$
- $\quad \sin C+\sin D=2 \sin \left(\frac{C+D}{2}\right) \cdot \cos \left(\frac{C-D}{2}\right)$
- $\quad \sin \mathrm{C}-\sin \mathrm{D}=2 \cos \left(\frac{\mathrm{C}+\mathrm{D}}{2}\right) \cdot \sin \left(\frac{\mathrm{C}-\mathrm{D}}{2}\right)$
- $\quad \cos C+\cos D=2 \cos \left(\frac{C+D}{2}\right) \cdot \cos \left(\frac{C-D}{2}\right)$
- $\quad \cos C-\cos D=2 \sin \left(\frac{C+D}{2}\right) \cdot \sin \left(\frac{D-D}{2}\right)$
- $\sin ^{2} A-\sin ^{2} B=\sin (A+B) \cdot \sin (A-B)$
- $\cos ^{2} A-\sin ^{2} B=\cos (A+B) \cdot \cos (A-B)$
- $\quad \sin 3 A=3 \sin A-4 \sin ^{3} A$
- $\quad \cos 3 A=4 \cos ^{3} A-3 \cos A$
- $\tan 3 \mathrm{~A}=\frac{3 \tan \mathrm{~A}-\tan ^{3} \mathrm{~A}}{1-3 \tan ^{2} \mathrm{~A}}$

Important Identity

- If $\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$ or π (or ABC is a triangle), Then $\tan A+\tan B+\tan C=\tan A \cdot \tan B \cdot \tan C$
$\cot \mathrm{A} \cdot \cot \mathrm{B}+\cot \mathrm{B} \cdot \cot \mathrm{C}+\cot \mathrm{C} \cdot \cot \mathrm{A}=1$
- If $\mathrm{A}+\mathrm{B}+\mathrm{C}=90^{\circ}$
$\cot A+\cot B+\cot C=\cot A \cdot \cot B \cdot \cot C$
$\tan A \tan B+\tan B \tan C+\tan C \tan A=1$
- $\sin \theta \cdot \sin \left(60^{\circ}-\theta\right) \cdot \sin \left(60^{\circ}+\theta\right)=\frac{1}{4} \sin 3 \theta$
- $\cos \theta \cdot \cos \left(60^{\circ}-\theta\right) \cdot \cos \left(60^{\circ}+\theta\right)=\frac{1}{4} \cos 3 \theta$
- $\tan \theta \cdot \tan \left(60^{\circ}-\theta\right) \cdot \tan \left(60^{\circ}+\theta\right)=\tan 3 \theta$
- $\cot \theta \cdot \cot \left(60^{\circ}-\theta\right) \cdot \cot \left(60^{\circ}+\theta\right)=\cot 3 \theta$

Maximum \& Minimum value of trigonometric Ratios:

$\max ^{\mathrm{m}}$
$\sin \theta$ or $\cos \theta$
$\sin ^{2} \theta$ or $\cos ^{2} \theta$
$\sin ^{3} \theta$ or $\cos ^{3} \theta$
$\tan \theta$ or $\cot \theta$
$\tan ^{2} \theta$ or $\cot ^{2} \theta$
$\tan ^{3} \theta$ or $\cot ^{3} \theta$
$\sec \theta$ or $\operatorname{cosec} \theta$
$\sec ^{2} \theta$ or $\operatorname{cosec}^{2} \theta$
$\sec ^{3} \theta$ or $\operatorname{cosec}^{3} \theta$
$\min ^{\mathrm{m}}$
$1 \quad-1$
10
$1 \quad-1$
$\infty \quad-\infty$
$\infty \quad 0$
$\infty \quad-\infty$
$\infty \quad-\infty$
$\infty \quad 1$
$\infty \quad-\infty$

- $\quad a \sin \theta+b \cos \theta$
$\Rightarrow \max ^{\mathrm{m}}$ value $=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$
$\Rightarrow \min ^{\mathrm{m}}$ value $=-\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$
- Maximum \& minimum value of $\sin ^{n} \theta \cdot \cos ^{n} \theta$
$\Rightarrow \max ^{\mathrm{m}}$ value $=\frac{1^{\mathrm{n}}}{2^{\mathrm{n}}}=\frac{1}{2^{\mathrm{n}}} \quad\left[\because \max ^{\mathrm{m}}\right.$ value of $\left.\sin 2 \theta=1\right]$

$a \tan ^{2} \theta+b \cot ^{2} \theta$
$(\sqrt{a} \tan \theta)^{2}+(\sqrt{b} \cot \theta)^{2}-2 \sqrt{a} \tan \theta \cdot \sqrt{b} \cot \theta+$ $2 \sqrt{a} \tan \theta \cdot \sqrt{b} \cot \theta$
$=(\sqrt{a} \tan \theta-\sqrt{b} \cot \theta)^{2}+2 \sqrt{a} \tan \theta \cdot \sqrt{b} \cot \theta$
$=(\sqrt{a} \tan \theta-\sqrt{b} \cot \theta)^{2}+2 \sqrt{a b}$
Min $^{\mathrm{m}}$ value will be $2 \sqrt{a b}$ when $\sqrt{a} \tan \theta-\sqrt{b} \cot \theta=0$
$\operatorname{Min}^{\mathrm{m}}$ value $=2 \sqrt{a b}$
- $a \tan ^{2} \theta+\cot ^{2} \theta$
\Rightarrow minimum value $=2 \sqrt{a b}$
- $a \sin ^{2} \theta+b \operatorname{cosec}^{2} \theta$
minimum value $=2 \sqrt{a b}$ when $\mathrm{b} \leq \mathrm{a},=\mathrm{a}+\mathrm{b}$ when $\mathrm{b} \geq \mathrm{a}$
- $\quad a \cos ^{2} \theta+b \sec ^{2} \theta$
\Rightarrow minimum value $=2 \sqrt{a b}$ when $\mathrm{b} \leq \mathrm{a}$
$=\mathrm{a}+\mathrm{b}$ when $\mathrm{b} \geq \mathrm{a}$
- $\quad a \sec ^{2} \theta+b \operatorname{cosec}^{2} \theta$

Minimum value $=(\sqrt{a}+\sqrt{b})^{2}$

Mensuration

Formulae of Areas of Different Triangles

$>$ Scalene triangle: \rightarrow

Area $=\frac{1}{2} \times$ base \times height
Area $=\sqrt{s(s-a)(s-b)(s-c)}$
Where $S=\frac{a+b+c}{2}$
Area $=\frac{1}{2} \times \mathrm{a} \times \mathrm{c} \sin \mathrm{B}$
$=\frac{1}{2} \times \mathrm{a} \times \mathrm{b} \times \sin \mathrm{C}$
$=\frac{1}{2} \times \mathrm{b} \times \mathrm{c} \times \sin \mathrm{A}$
> Isosceles triangle: \rightarrow

Height (h) $=\frac{1}{2} \sqrt{4 \mathrm{a}^{2}-\mathrm{b}^{2}}$
Area $=\frac{1}{2} \times$ base \times height
Area $=\frac{1}{2} b \sqrt{4 a^{2}-b^{2}}$

Electrical Engineering 15 TOTAL TESTS

- 10 MOCKS FOR PART ' A '
- 5 MOCKS FOR PART 'B' [ELECTRIGALJ

VALIDITY : 1 MONTH

$>$ Equilateral triangle: \rightarrow

Area $=\frac{\sqrt{3}}{4} \mathrm{a}^{2}$
$\mathrm{h}=\frac{\sqrt{3}}{2} \mathrm{a}$

> Right angled triangle: \rightarrow

Side of the maximum size square inscribed in a right angle $\Delta=$
$a=\frac{\mathrm{P} \times \mathrm{b}}{\mathrm{P}+\mathrm{B}}$

Formulae of Surface Area \& Volume of Different 3D Figures

1. Cuboid \rightarrow

> Volume of cuboid $=\mathrm{l} \times \mathrm{b} \times \mathrm{h}$
$>$ Lateral surface Area $=$ Perimeter of Base \times Height Base $=$ $2(l+b) \times h$
$>$ Total surface area $=$ Lateral surface Area $+2 \times$ Area of base $=2(\mathrm{lh}+\mathrm{bh}+\mathrm{lb})$
$>$ Diagonal $=\sqrt{l^{2}+b^{2}+h^{2}}$
$>\mathrm{V}=\sqrt{A_{1} \times A_{2} \times A_{3}}$
$\mathrm{A}_{1} \Rightarrow$ Area of base or top $=\mathrm{lb}$
$\mathrm{A}_{2} \Rightarrow$ Area of one side face $=\mathrm{bh}$
$\mathrm{A}_{3} \Rightarrow$ Area of another side face $=\mathrm{hl}$
$>$ To find the total surface area of a cuboid if the sum of all three sides and diagonals are given.
Total surface area $=(\text { sum of all three side })^{2}-(\text { Diagonal })^{2}$
$>$ For painting the surface area of a box or to know how much tin sheet is required, we will use, Total surface area.
$>$ To find the length of the longest pole to be placed is a room, we will calculate diagonal i.e. $\sqrt{l^{2}+b^{2}+h^{2}}$

2. Cube \rightarrow

$>$ Volume $=(\text { side })^{3}=a^{3}$
$>$ Lateral surface area $=4 \mathrm{a}^{2}$
$>$ Total surface area $=6 \mathrm{a}^{2}$
> Diagonal of the cube $=\sqrt{3} a$
$>$ Face diagonal of the cube $=\sqrt{2} a$
$>$ Volume of cube $=\left(\sqrt{\frac{\text { total surface area }}{6}}\right)^{3}$
$>$ In Radius of cube $=\frac{a}{2}$
> Circumradius of cube $=\frac{\sqrt{3}}{2} \mathrm{a}$

3. Right circular cone \rightarrow

Slant height, $\mathrm{l}=\sqrt{r^{2}+h^{2}}$
> Volume $=\frac{1}{3} \times$ area of base \times height $=\frac{1}{3} \pi r^{2} h$
$>$ Curved surface area $=\frac{1}{2}$ (Perimeter of base) \times slant height
$=\frac{1}{2} \times 2 \pi r \times l=\pi r l=\pi r \sqrt{r^{2}+h^{2}}$
$>$ Total surface area $=$ C.S.A + Area of base
$=\pi r l+\pi r^{2}=\pi r(l+r)$
$>$ If cone is formed by sector of a circle, then.
(a) Slant height = radius of circle
(b) circumference of base of cone = length of arc of sector
$>$ Radius of maximum size sphere in a cone $=\frac{h \times r}{l+r} \quad\left[\begin{array}{c}r \rightarrow \text { radius of cone } \\ l \rightarrow \text { slant height of cone } \\ h \rightarrow \text { height of cone }\end{array}\right]$
$>$ If cone is cut parallel to its base and ratio of heights, radius or slant height of both parts is given as $\rightarrow x: y$.

Then Ratio of their volume $=x^{3}: y^{3}$

4. Frustum of a right Circular cone \rightarrow

$>$ Slant height

$\mathrm{AC}=\mathrm{l}, \mathrm{AB}=\mathrm{h}, \mathrm{BC}=\mathrm{R}-\mathrm{r}$
Applying Pythagorean theorem in $\triangle \mathrm{ABC}$
$\mathrm{L}=\sqrt{h^{2}+\left(R-r^{2}\right)}$
volume of frustrum $=\frac{1}{3} \pi\left(R^{2}+r^{2}+R r\right) h$
$>$ Curved surface area $=\pi(R+r) l$
Total surface area, T.S.A $=\pi(R+r) l+\pi\left(R^{2}+r^{2}\right)$
5. Prism \rightarrow

A prism is a solid object with:
(a) Identical Ends
(b) Flat faces

$>$ Volume of Prism $=$ Area of base \times height
$>$ Lateral surface area of prism $=$ perimeter of base \times height
$>$ Total surface area of $=$ Perimeter of base \times height $+2 \times$ area of base

6. Pyramids \rightarrow

$>$ Volume $=\frac{1}{3}($ area of base $) \times$ height
> Curved surface area $=$
$\frac{1}{2} \times($ perimeterof base $) \times$ slant height
$>$ Total surface area $=$ curved surface area + area of the base
$>$ Whenever in a question, If we want to find Slant height or height, then we will use inradius of the base not the Radius or side of the base.

7. Hollow Cylinder \rightarrow

\Rightarrow Volume $=\pi\left(R^{2}-r^{2}\right) h$
> Curved Surface Area $=2 \pi(\mathrm{R}+\mathrm{r}) \mathrm{h}$
$>$ Total surface area $=2 \pi(\mathrm{R}+\mathrm{r}) \mathrm{h}+2 \pi\left(R^{2}-r^{2}\right)$

8. Tetrahedron \rightarrow

$>$ Height $=\sqrt{\frac{2}{3}} a$
$>$ Volume $=\frac{\sqrt{2}}{12} a^{3}$
$>$ Lateral surface area $=\frac{3 \sqrt{3}}{4} a^{2}$
$>$ Total surface area $=\sqrt{3} a^{2}$
> Slant height $=\frac{\sqrt{3}}{2} \mathrm{a}$

$>$ Slant Edge $=\mathrm{a}$

9. Swimming Pool:

$>$ Volume of swimming Pool $=\frac{1}{2}$ [Sum of depth of both sides] \times length \times Breadth

Simple Interest

1. If a certain sum in T years at R\% per annum amounts to Rs. A, then the sum will be
$P=\frac{100 \times A}{100+R \times T}$
2. The annual payment that will discharge a debt of Rs. A due in T years at $\mathrm{R} \%$ per annum is
Annual payment $=$ Rs. $\left(\frac{100 \mathrm{~A}}{100 \mathrm{~T}+\frac{\mathrm{RT}(\mathrm{T}-1)}{2}}\right)$
3. If a certain sum is invested in n types of investments in such a manner that equal amount is obtained on each investment where interest rates are $R_{1}, R_{2}, R_{3} \ldots \ldots, R_{n}$, respectively and time periods are $T_{1}, T_{2}, T_{3}, \ldots \ldots ., T_{n}$, respectively, then the ratio in which the amounts are invested is
$\frac{1}{100+R_{1} T_{1}}: \frac{1}{100+R_{2} T_{2}}: \frac{1}{100+R_{3} T_{3}}: \ldots \frac{1}{100+R_{n} T_{n}}$.
4. If a certain sum of money becomes n times itself in T years at simple interest, then the rate of interest per annum is $\mathrm{R}=\frac{100(\mathrm{n}-1)}{\mathrm{T}} \%$
5. If a certain sum of money becomes n times itself at $\mathrm{R} \%$ per annum simple interest in T years, then
$\mathrm{T}=\left(\frac{\mathrm{n}-1}{\mathrm{R}}\right) \times 100$ years
6. If a certain sum of money becomes n times itself in T years at a simple interest, then the time T in which it will become m times itself is given by
$\mathrm{T}^{\prime}=\left(\frac{\mathrm{m}-1}{\mathrm{n}-1}\right) \times \mathrm{T}$ years
7. Effect of change of P, R and T on simple interest is given by the following formula:
Change in Simple Interest $=\frac{\text { Product of fixed parameter }}{100} \times$ [difference of product of variable parameters]

For example, if rate (R) changes from R_{1} to R_{2} and P, T are fixed, then
Change in SI $=\frac{\mathrm{PT}}{100} \times\left(\mathrm{R}_{1}-\mathrm{R}_{2}\right)$
Similarly, if principal (P) changes from P_{1} to P_{2} and R , T are fixed, then change in SI
$=\frac{\mathrm{RT}}{100} \times\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right)$
Also, if rate (R) change from R_{1} to R_{2} and time (T) changes from T_{1} to T_{2} but principal (P) is fixed, then change in
$\mathrm{SI}=\frac{\mathrm{P}}{100} \times\left(\mathrm{R}_{1} \mathrm{~T}_{1}-\mathrm{R}_{2} \mathrm{~T}_{2}\right)$
8. If a certain sum of money P lent out at SI amounts to A_{1} in T_{1} years and to A_{2} in T_{2} years, then
$\mathrm{P}=\frac{\mathrm{A}_{1} \mathrm{~T}_{2}-\mathrm{A}_{2} \mathrm{~T}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}$ and $\mathrm{R}=\frac{\mathrm{A}_{1}-\mathrm{A}_{2}}{\mathrm{~A}_{1} \mathrm{~T}_{2}-\mathrm{A}_{2} \mathrm{~T}_{1}} \times 100 \%$
9. If a certain sum of money P lent out for a certain time T amounts to A_{1} at $\mathrm{R}_{1} \%$ per annum and to A_{2} at $\mathrm{R}_{2} \%$ per annum, then
$\mathrm{P}=\frac{\mathrm{A}_{2} \mathrm{R}_{1}-\mathrm{A}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}-\mathrm{R}_{2}}$ and $\mathrm{T}=\frac{\mathrm{A}_{1}-\mathrm{A}_{2}}{\mathrm{~A}_{2} \mathrm{R}_{1}-\mathrm{A}_{1} \mathrm{R}_{2}} \times 100$ years
10. If an amount P_{1} lent at simple interest rate of $R_{1} \%$ per annum and another amount P_{2} at simple interest rate of $\mathrm{R}_{2} \%$ per annum, then the rate of interest for the whole sum is
$R=\left(\frac{P_{1} R_{1}+P_{2} R_{2}}{P_{1}+P_{2}}\right)$

Compound Interest

1. (a) The amount A due after t years, when a principal P is given on compound interest at the rate R\% per annum is given by
$A=P\left(1+\frac{R}{100}\right)^{t}$
(b) Compound interest (CI) $=\mathrm{A}-\mathrm{P}=\mathrm{P}\left[\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{t}}-1\right]$
(c) Rate of interest $(R)=\left[\left(\frac{A}{P}\right)^{\frac{1}{t}}-1\right] \%$ p.a.

Note: Simple interest and compound interest for 1 year at a given rate of interest per annum are always equal.
2. If the interest is compounded half-yearly, then
(a) Amount $(\mathrm{A})=\mathrm{P}\left(1+\frac{\mathrm{R}}{100 \times 2}\right)^{2 \mathrm{t}}$
(b) Compound interest (CI) $=\mathrm{P}\left[\left(1+\frac{\mathrm{R}}{100 \times 2}\right)^{2 \mathrm{t}}-1\right]$
(c) Rate (R) $=2 \times 100\left[\left(\frac{A}{P}\right)^{\frac{1}{t} \times 2}-1\right] \%$ p. a.
3. If the interest is compounded quarterly, then

(a) Amount $(\mathrm{A})=\mathrm{P}\left(1+\frac{\mathrm{P}}{100 \times 4}\right)^{4 t}$
(b) Compound interest (CI) $=\mathrm{P}\left[\left(1+\frac{\mathrm{R}}{100 \times 4}\right)^{4 \mathrm{t}}-1\right]$
(c) Rate $(\mathrm{R})=4 \times 100\left[\left(\frac{A}{P}\right)^{\frac{1}{t} \times 4}-1\right] \%$ p.a.

In general, if the interest is compound n times a year, then
(a) Amount $(\mathrm{A})=\mathrm{P}\left(1+\frac{R}{100 \times n}\right)^{n \times t}$
(b) Compound interest $(\mathrm{CI})=\mathrm{P}\left[\left(1+\frac{\mathrm{R}}{100 \times \mathrm{n}}\right)^{\mathrm{n} \times \mathrm{t}}-1\right]$
(c) Rate of interest $(\mathrm{R})=n \times 100\left[\left(\frac{A}{P}\right)^{\frac{1}{t} \times n}-1\right] \% p . a$.
4. When the rates of interest are different for different years, say R_{1}, R_{2}, R_{3} percent for first, second and third year, respectively, then
Amount $=P\left(1+\frac{\mathrm{R}_{1}}{100}\right)\left(1+\frac{\mathrm{R}_{2}}{100}\right)\left(1+\frac{\mathrm{R}_{3}}{100}\right)$
5. When the time is given in the form of fraction, say $2 \frac{3}{4}$ years, then,
Amount $=P\left(1+\frac{\mathrm{R}}{100}\right)^{2} \times\left(1+\frac{\frac{3_{4}}{} \mathrm{R}}{100}\right)$
6. (a) The difference between the compound interest and the simple interest on a certain sum of money for 2 years at $\mathrm{R} \%$ per annum is given by
$\mathrm{CI}-\mathrm{SI}=\mathrm{P}\left(\frac{R}{100}\right)^{2}$ [in term of P and R]
and, $\mathrm{CI}-\mathrm{SI}=\frac{\mathrm{R} \times \mathrm{SI}}{2 \times 100}$ [in terms of SI and R]
(b) The difference between the compound interest and the simple interst on a certain sum of money for 2 years at $\mathrm{R} \%$ per annum is given by
$\mathrm{CI}-\mathrm{SI}=\mathrm{P}\left[\left(\frac{\mathrm{R}}{100}\right)^{3}+3\left(\frac{\mathrm{R}}{100}\right)^{2}\right][$ in terms of P and R$]$
And, CI - SI $=\frac{S I}{3}\left[\left(\frac{R}{100}\right)^{2}+3\left(\frac{R}{100}\right)\right][$ in terms of SI and R]
7. If a certain sum becomes n times in t years at compound interest, then the same sum becomes n^{m} times in mt years.
8. If a certain sum becomes n times in t years, then the rate of compound interest is given by

$$
R=100\left[(n)^{\frac{1}{t}}-1\right]
$$

9. If a certain sum of money at compound interest amounts to Rs. x in A years and to Rs. y in B years, then the rate of interest per annum is
$R=\left[\left(\frac{y}{x}\right)^{1 / B-A}-1\right] \times 100 \%$
10. If a loan of Rs. P at R\% compound interest per annum is to be repaid in n equal yearly instalments, then the value of each instalment is given by
s. $\frac{P}{\left(\frac{100}{100+\mathrm{R}}\right)+\left(\frac{100}{100+\mathrm{R}}\right)^{2}+\ldots\left(\frac{100}{100+\mathrm{R}}\right)^{\mathrm{n}}}$.

Number System

1. L.C.M. and H.C.F. of Fractions
L.C. $M=\frac{\text { L.C.M.of the numbers in numerators }}{\text { H.C.F.of in the number in denominator }}$
H. C. F $=\frac{\text { H.C.F.of the numbers in numerators }}{\text { L.C.M.of in the number in denominator }}$
2. Product of two numbers $=$ L.C.M. of the numbers \times H.C.F. of the numbers
3. To find the greatest number that will exactly divide x, y and z .
Required number $=$ H.C.F. of x, y and z .
4. To find the greatest number that will divide x, y and z leaving remainders a, b and c , respectively.
Required number $=$ H.C.F. of $(x-a),(y-b)$ and $(z-c)$.
5. To find the least number which is exactly divisible by x, y and z .
Required number $=$ L.C.M. of x, y and z .
6. To find the least number which when divided by x, y and z leaves the remainders a, b and c, respectively. It is always observed that $(x-a)=(y-b)=(z-c)=k$ (say)
$\therefore \quad$ Required number $=$ (L.C.M. of x, y and z$)-\mathrm{k}$.
7. To find the least number which when divided by x, y and z leaves the same remainder r in each case.
Required number $=($ L.C.M. of x, y and $z)+r$
8. To find the greatest number that will divide x, y and z leaving the same remainder in each case.
(A) When the value of remainder r is given:

Required number $=$ H.C.F. of $(x-r),(y-r)$ and $(z-r)$.
(B) When the value of remainder is not given:

Required number $=$ H.C.F. of $|(x-y)|,|(y-z)|$ and $|(z-x)|$
9. To find the n -digit greatest number which, when divided by x, y and z.
(A) leaves no remainder (i.e., exactly divisible)

Step 1: L.C.M. of x, y and $\mathrm{z}=\mathrm{L}$
Step 2: $\frac{\mathrm{L}) \mathrm{n} \text {-digit greatest number }}{\text { Remainder }=R}$

Step 3: Required number = n -digit greatest number -R
(B) leaves remainder K in each case.

Required number $=(n$-digit greatest number $-R)+K$.
10. To find the n-digit smallest number which when divided by x, y and z.
(A) leaves no remainder (i.e., exactly divisible)

Step 1: L.C.M. of x, y and $\mathrm{z}=\mathrm{L}$
Step 2: $\frac{\text { L) } \overline{\text { n-digit smallest number }}}{\text { Remainder }=R}$
Step 3: Required number $=n$-digit smallest number $+(L-R)$.
(B) leaves remainder K in each case.

Required number $=n$-digit smallest number $+(L-R)+k$

Profit \& Loss

1. Gain percent

Gain $\%=\frac{\text { Gain } \times 100}{\text { C.P. }}$
Loss percent

Loss $\%=\frac{\text { Loss } \times 100}{\text { C.P. }}$
2. When the selling price and gain percent are given:
C. P. $=\left(\frac{100}{100+\text { Gain } \%}\right) \times$ S. P.
3. When the cost and gain percent are given:
S. P $=\left(\frac{100+\text { Gain } \%}{100}\right) \times$ C. P .
4. When the cost and loss percent are given:
S. P. $=\left(\frac{100-\text { Loss } \%}{100}\right) \times$ C. P
5. When the selling price and loss percent are given.
C. $\mathrm{P}=\left(\frac{100}{100-\text { Loss } \%}\right) \times$ S. P
6. If a man buys x items for Rs. y and sells z items for Rs. w, then the gain or loss percent made by him is

$$
\left(\frac{x w}{z y}-1\right) \times 100 \%
$$

7. If the cost price of m articles is equal to the selling price of n articles, then \% gain or loss
$=\left(\frac{m-n}{n}\right) \times 100$
[If $m>n$, it is \% gain and if $m<n$, it is \% loss]
8. If an article is sold at a price S.P. ${ }_{1}$, then \% gain or \% loss is x and if it is sold at a price S.P.2, then $\%$ gain or $\%$ loss is y. If the cost price of the article is C.P., then
$\frac{S . P_{1}}{100+x}=\frac{S . P_{2}}{100+y}=\frac{C . P .}{100}=\frac{S . P_{1}-S . P_{2}}{x-y}$
Where x or y is -ve, if it indicates a loss, otherwise it is + ve.
9. If ' A ' sells an article to ' B ' at a gain/loss of $m \%$ and ' B ' sells it to ' C ' at a gain/loss of $\mathrm{n} \%$ If ' C ' pays Rs. z for it to ' B ' then the cost price for ' A ' is
$\left[\frac{100^{2} z}{(100+m)(100+n)}\right]$
where m or n is -ve, it indicates a loss, otherwise it is + ve.
10. If ' A ' sells an article to ' B ' at a gain/loss of $m \%$ and ' B ' sells it to ' C ' at a gain/loss of $\mathrm{n} \%$, then the resultant profit/loss percent is given by
$\left(m+n+\frac{m n}{100}\right)$
where m or n is $-v e$, if it indicates a loss, otherwise it is +ve.
11. When two different articles are sold at the same selling price, getting gain/loss of $x \%$ on the first and gain/loss of $y \%$ on the second, then the overall\% gain or $\%$ loss in the transaction is given by
$\left[\frac{100(x-y)+2 x y}{(100+x)+(100+y)}\right] \%$
The above expression represents overall gain or loss accordingly as its sign is +ve or -ve .
12. When two different articles are sold at the same selling price getting a gain of $x \%$ on the first and loss of $x \%$ on the second, then the overall\% loss in the transaction is given by

$$
\left(\frac{x}{10}\right)^{2} \%
$$

Note that in such questions there is always a loss.
13. A merchant uses faulty measure and sells his goods at gain/loss of $x \%$. The overall $\%$ gain $/ \operatorname{loss}(\mathrm{g})$ is given by
$\frac{100+\mathrm{g}}{100+\mathrm{x}}=\frac{\text { True measure }}{\text { Faulty measure }}$
Note: If the merchant sells his goods at cost price, then $\mathrm{x}=0$.
14. A merchant uses y\% less weight/length and sells his goods at gain/loss of $\mathrm{x} \%$. The overall $\%$ gain/loss is given by
$\left[\left(\frac{y+x}{100-y}\right) \times 100\right] \%$
15. A person buys two items for Rs. A and sells one at a loss of 1% and other at a gain of $g \%$. If each item was sold at the same price, then
(a) The cost price of the item sold at loss
$=\frac{\mathrm{A}(100+\% \text { gain })}{(100-\% \text { loss })+(100+\% \text { gain })}$
(b) The cost price of the item sold at gian
$=\frac{\mathrm{A}(100-\% \text { loss })}{(100-\% \text { loss })+(100+\text { gain })}$
16. If two successive discounts on an article are $\mathrm{m} \%$ and $\mathrm{n} \%$, respectively, then a single discount equivalent to the two successive discounts will be

$$
\left(m+n-\frac{m n}{100}\right) \%
$$

17. If three successive discounts on an article are $1 \%, \mathrm{~m} \%$ and $n \%$, respectively, then a single discount equivalent to the three successive discounts will be
$\left[l+m+n-\frac{(l m+l n+m n)}{100}+\frac{l m n}{100^{2}}\right] \%$
18. A shopkeeper sells an item at Rs. z after giving a discount of $\mathrm{d} \%$ on labelled price. Had he not given the discount, he would have earned a profit of $\mathrm{p} \%$ on the cost price. The cost price of each item is given by
C. P. $=\left[\frac{100^{2} \mathrm{z}}{(100-\mathrm{d})(100+\mathrm{p})}\right]$

PIPE \& CISTERN

1. If an inlet can completely fill the empty tank in X hrs, the part of the tank filled in $1 \mathrm{hr}=\frac{1}{X}$.

2. If an outlet can empty the full tank in Y hrs, the part of the tank emptied in $1 \mathrm{hr}=\frac{1}{Y}$.
3. If both inlet and outlet are open, net part of the tank filled in $1 \mathrm{hr}=\frac{1}{X}-\frac{1}{Y}$.
4. Two pipes A and B can fill (or empty) a cistern is given by $\left(\frac{X Y}{X+Y}\right)$ hrs.
5. Three pipes A, B and C can fill a cistern in X, Y and Z hrs, respectively, while working alone. If all the three pipes are opened together, the time taken to fill the cistern is given by
$\left(\frac{\mathrm{X}+\mathrm{Y}+\mathrm{Z}}{\mathrm{XY}+\mathrm{YZ}+\mathrm{ZX}}\right) \mathrm{hrs}$.
6. Two pipes A and B can fill a cistern in X hrs. and Y hrs., respectively. There is also an outlet C. If all the three pipes are opened together, the tank is full in Z hrs. The time taken by C to empty the full tank is given by
$\left(\frac{X Y Z}{X Z+Y Z-X Y}\right) h r s$.
7. A tank takes X hrs to be filled by a pipe. But due to a leak, it is filled in Y hrs. The amount of time in which the leak can empty the full tank
$=\left(\frac{\mathrm{XY}}{\mathrm{Y}-\mathrm{X}}\right) \mathrm{hrs}$.
8. A cistern has a leak which can empty it in X hrs. A pipe which admits Y litres of water per hour into the cistern is turned on and now the cistern is emptied in Z hrs. The capacity of the cistern is $\left(\frac{X Y Z}{Z-X}\right)$ litres.
9. One fill pipe A is k times faster than the other fill pipe B.
(a) If B can fill a cistern in x hrs, then the time in which the cistern will be full, if both the fill pipes are opened together, is $\left(\frac{x}{k+1}\right) \mathrm{hrs}$.
(b) If A can fill a cistern in y hrs, then the time in which the cistern will be full, if both the fill pipes are opened together, is
$\left(\frac{k}{k+1}\right) y$ hrs.
10. If one fill pipe A is k times faster and takes x minutes less time than the other fill pipe B, then
(a) the time taken to fill a cistern, if both the pipes are opened together is
$\left(\frac{k x}{(k-1)^{2}}\right)$ minutes.
(b) A will fill the cistern in $\left(\frac{x}{k-1}\right)$ minutes.
(c) B will fill the cistern in $\left(\frac{k x}{k-1}\right)$ minutes.

Time \& Work

Time $=\frac{\text { Work done }}{\text { Efficiency }}$

- When work is same.

Time $\propto \frac{1}{\text { Efficiency }}$

- If A can do a piece of work is n days.

Then, per day working efficiency of $A=\frac{1}{n}$

- If working efficiency of $A \& B$ is $\rightarrow x: y$

Then, time taken by A \& B to finish the work is in the ratio \rightarrow y: x
e.g. If A does three times faster work than ' B ', then ratio of work done by A and B is $3: 1$.
Then
Ratio of time taken by A \& B =1:3

- If A can do a piece of work is x days and B can do a piece of work is 4 days, then both of them working together will do the same work in
$\frac{x y}{x+y}$ days
- If A, B \& C will working alone, can complete a work is x, y and z days, respectively, then they will together complete the work in
$\frac{x y z}{x y+y z+z x}$
- Two persons A \& B, working together, can complete a piece of work in x days. If A, working alone, can complete the work in y days, then B, working alone, will complete the work in
$\Rightarrow \frac{x y}{y-x}$
- If A \& B working together, can finish a piece of work is x days, $B \& C$ in 4 days, C \& A in z days. Then,$A+B+C$ working together will finish the job is
$\Rightarrow \frac{2 x y z}{x y+y z+z x}$
- If A can finish a work in x days and B is k times efficient than A , then the time taken by both A and B , working together to complete the work is
$\frac{x}{1+k}$
- If A \& B working together can finish a work in x days \& B is k times efficient than A, then the time taken by
A working Alone, will take $\Rightarrow(\mathrm{k}+1) \mathrm{x}$
B working Alone, will take $\Rightarrow\left(\frac{k+1}{k}\right) x$
- If A working Alone takes a days more than A \& B \& B working Alone takes b days more than $A \& B$. Then ,
Number of days, taken by A \& B working together to finish a job is $=\sqrt{a b}$

Time Speed \& Distance

Distance $=$ Time \times Speed

- When Distance is constant

Time $\propto \frac{1}{\text { speed }}$

- When Time is constant

Distance \propto speed

- When speed in constant

Distance \propto Time

- \quad Average speed $=\frac{\text { Total Distance }}{\text { Total Time Taken }}$
- When Distance is equal

Average speed $=\frac{2 x y}{x+y}$
$\mathrm{x}, \mathrm{y} \rightarrow$ speeds

Relative Speed \rightarrow

(a) When two bodies move in the same direction, Let speed of two bodies be $S_{A} \& S_{B}$.

Relative speed $=S_{A}-S_{B}$
(b) When two bodies are moving in the opposite direction. Let the speed of two bodies be $S_{A} \& S_{B}$.
Relative speed $=S_{A}+S_{B}$.
(c) When two bodies moving towards each other than time taken by them to meet.
$\mathrm{D} \rightarrow$ Distance between two bodies.
$S_{A}, S_{B} \rightarrow$ Speed of two bodies.
T, time taken to meet other $=\frac{D}{S_{A}+S_{B}}$
(d) When two bodies are moving in opposite direction, time taken to meet.
$\mathrm{D} \rightarrow$ Distance between the two bodies.
$\mathrm{S}_{\mathrm{A}}, \mathrm{S}_{\mathrm{B}} \rightarrow$ Speed of two bodies
T, time taken $=\frac{D}{S_{A}-S_{B}}$
(e) If two persons $\mathrm{A} \& \mathrm{~B}$, start at the same time from P and Q towards each other and after crossing they take $T_{1} \& T_{2}$ hrs in reaching Q \& P
$\frac{\mathrm{S}_{\mathrm{A}}}{\mathrm{S}_{\mathrm{B}}}=\sqrt{\frac{\mathrm{T}_{\mathrm{B}}}{\mathrm{T}_{\mathrm{A}}}}$

Algebraic Identities

Cyclic Factors
(a) $\mathbf{a}^{2}(b-c)+b^{2}(c-a)+c^{2}(a-b)=-(a-b)(b-c)(c-a)$
(b) $\mathbf{b c}(\mathbf{b}-\mathbf{c})+\mathbf{c a}(\mathbf{c}-\mathbf{a})+\mathbf{a b}(\mathbf{a}-\mathbf{b})=-(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})$
(c) $\mathbf{a}\left(\mathbf{b}^{2}-\mathbf{c}^{2}\right)+\mathbf{b}\left(\mathbf{c}^{2}-\mathbf{a}^{2}\right)+\mathbf{c}\left(\mathbf{a}^{2}-\mathbf{b}^{2}\right)=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-$
a)

Formula for 3 \& 4 terms
(d) $(\mathbf{a}+\mathbf{b}+\mathbf{c})^{\mathbf{2}}=\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}+2(\mathrm{ab}+\mathrm{bc}+\mathrm{ca})$
(e) $(\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d})^{\mathbf{2}}=\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}+\mathrm{d}^{2}+2(\mathrm{ab}+\mathrm{ac}+\mathrm{ad}+\mathrm{bc}$ $+b d+c d)$
(f) $(\mathbf{a}+\mathbf{b}+\mathbf{c})^{3}=a^{3}+b^{3}+c^{3}+3(b+c)(c+a)(a+b)$
(g) $x^{4}+x^{2} y^{2}+x^{4}=\left(x^{2}+x y+y^{2}\right)\left(x^{2}-x y+y^{2}\right)$

Special Results

$>$ If, $x+\frac{1}{x}=a$
Then,
(a) $x^{2}+\frac{1}{x^{2}}=a^{2}-2$
(b) $x^{3}+\frac{1}{x^{3}}=a^{3}-3 a$
(c) $\mathrm{x}^{4}+\frac{1}{\mathrm{x}^{4}}=\mathrm{a}^{4}-4 \mathrm{a}^{2}+2$
(d) $x^{5}+\frac{1}{x^{5}}=a^{5}-5 a^{3}+5 a$
(e) $x^{6}+\frac{1}{x^{6}}=a^{6}-6 a^{4}+9 a^{2}-2$
$>$ If $x^{4}+\frac{1}{x^{4}}=a$, Then
$x^{2}+\frac{1}{x^{2}}=\sqrt{a+2}$
$x+\frac{1}{x}=\sqrt{\sqrt{a+2}+2}$
$\mathrm{x}-\frac{1}{\mathrm{x}}=\sqrt{\sqrt{\mathrm{a+2}}-2}$
$>$ If $x-\frac{1}{x}=\mathbf{a}$
Then,
(a) $x^{2}+\frac{1}{x^{2}}=a^{2}+2$
(b) $\mathrm{x}^{3}-\frac{1}{\mathrm{x}^{3}}=\mathrm{a}^{3}+3 \mathrm{a}$
(c) $\mathrm{x}^{4}+\frac{1}{\mathrm{x}^{4}}=\mathrm{a}^{4}+4 \mathrm{a}^{2}+2$
(d) $x^{5}-\frac{1}{x^{5}}=a^{5}+5 a^{3}+5 a$
(e) $x^{6}+\frac{1}{x^{6}}=a^{6}+6 a^{4}+9 a^{2}+2$
$>$ If $\mathrm{x}^{4}-\frac{1}{\mathrm{x}^{4}}=\mathrm{a}$, then
(a) $x^{2}+\frac{1}{x^{2}}=\sqrt{a+2}$
(b) $x+\frac{1}{x}=\sqrt{b+2}\{b=\sqrt{a+2}\} \sqrt{\sqrt{a+2}+2}$
(c) $x-\frac{1}{x}=\sqrt{b-2}\{b=\sqrt{a+2}\} \sqrt{\sqrt{a}+2-2}$
$>$ If $x+\frac{1}{x}=1$
Then, $\mathbf{x}^{\mathbf{3}}=\mathbf{- 1}$
$>$ If $x+\frac{1}{x}=-1$
Then, $x^{3}=1$
\Rightarrow If $x+\frac{1}{x}=\sqrt{3}$
Then, $\mathrm{x}^{3}+\frac{\mathbf{1}}{\mathrm{x}^{3}}=\mathbf{0}$, And $\mathrm{x}^{6}=-\mathbf{1}$
$>x^{4}+x^{2} y^{2}+y^{4}=\left(x^{2}+x y+y^{2}\right)\left(x^{2}-x y+y^{2}\right)$

$>$ Useful identity

(a) If $\mathrm{x}^{2}+\frac{1}{\mathrm{x}^{2}}=1$, then $\mathrm{x}^{6}=-1$
(b) If $x^{2}+\frac{1}{x^{2}}=-1$, then $x^{6}=1$

$>$ If $a x+b x=m \& b x-a y=n$

Then,
$\left(a^{2}+b^{2}\right)\left(x^{2}+y^{2}\right)=m^{2}+n^{2}$

Arithmetic \& Geometric Progression Arithmetic Progression

> Series of the form \rightarrow

$a, a+d, a+2 d, a+3 d$.
is called Arithmetic Progression, when they increase or decrease by a common difference
e.g. $\rightarrow 5,12,19,26,33$

Common difference, $\mathrm{d}=12-5=7$
$19-12=7$
$26-19=7$
$>\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3} \ldots \ldots \ldots, \mathrm{~T}_{\mathrm{n}}$
$\mathrm{d}=$ common difference
= 2nd term - Ist term
$=\mathrm{a}_{2}-\mathrm{a}_{1}$
$\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$a \rightarrow 1^{\text {st }}$ term
$\mathrm{n} \rightarrow$ no. of terms
$\mathrm{d} \rightarrow$ Common difference
$>$ Sum of n terms in A.P
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Or
$S_{\mathrm{n}}=\frac{\mathrm{n}}{2}[$ First term + last term $]$
$>$ Total no. of term
$=\frac{\text { Last term }- \text { First term }}{\text { Common difference }}+1$

test series
RRB ALP 2018 Stage-II (Physics \& Maths) 25 Total Tests
$\checkmark 10$ Mocks for Part 'A'
5 Mocks for Part 'B' (Physics \& Maths) 10 Practice sets for Part 'B' (Physics \& Maths)

VALIDITY : 1 MONTH

Geometric Progression

a, $a r, a r^{2}, a^{3}$.$a r^{n-1}$
Common Ratio (r) $=\frac{\text { Second term }}{\text { First term }}$
$\mathrm{n}^{\text {th }}$ term $\left(\mathrm{T}_{\mathrm{n}}\right)=\operatorname{ar}^{\mathrm{n}-1}$
> Sum of G.P, $\mathrm{Sn}=\frac{\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right)}{\mathrm{r}-1}$ where $\mathrm{r}>1$
Or
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$ where $r<1$
> Sum of an Infinite Geometric Progression when $\mathrm{r}<1$
$S_{\infty}=\frac{\mathrm{a}}{1-\mathrm{r}}$
> The figure made by joining the mid-points of a square and the area of thus made square is half the actual square.
> The figure made by joining the mid-points of a rightangle triangle is right angle triangle and the area thus made triangle is $1 / 4^{\text {th }}$ of the actual triangle.
$>$ To find the sum of First n natural number.
$S=1+2+3+4+\ldots$

$$
\mathrm{S}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}
$$

$>$ To find the sum of the Squares of the $1^{\text {st }} \mathrm{n}$ natural numbers.
$S=1^{2}+2^{2}+3^{2}+\ldots . \ldots+n^{2}$

$S=\frac{n(n+1)(2 n+1)}{6}$
$>$ To find the sum of the cubes of the $1^{\text {st }} \mathrm{n}$ natural numbers.
$S=1^{3}+2^{3}+3^{3}+\ldots \ldots+n^{3}$

$$
\mathrm{S}=\left[\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right]^{2}
$$

$>$ To find the sum of first n odd natural numbers.
$S=1+3+5+\ldots \ldots+(2 n-1)$
$\mathrm{S}=\mathrm{n}^{2}$

To find the sum of first n even natural numbers
$\mathrm{S}=2+4+6+\ldots \ldots+\ldots+2 n$
S = n (n +1)

Quadratic Equations

An algebraic expression of the form: $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, where a $\neq 0, b, c \in R$ is called a quadratic equation.

Root of the Quadratic Equation:

A root of the quadratic equation $\mathrm{ax}^{2}+\mathrm{bc}+\mathrm{c}=0$ is a number α (real or complex) such that a $a^{2}+b a+c=0$ then $(x-a)$ is factor of $a x^{2}+b x+c$. The roots of the quadratic equation are
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Nature of Roots:

The value of x at which value of equation will be zero.

1. Roots are imaginary: $b^{2}-4 a c \leq 0$
2. Roots are real: $b^{2}-4 a c \geq 0$

Sum \& product of root:

Let there are two roots named $\alpha \& \beta$, then
$a=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \& \beta=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$
Sum of root: $\alpha+\beta=\frac{-b}{a}$
Product of root: $\alpha \beta=\frac{c}{a}$
Then, $\mathrm{ax}^{2}+\mathrm{bc}+\mathrm{c}=0$ can be written as:
$\Rightarrow x^{2}+\frac{b}{a} x+\frac{c}{a}=0$
$\Rightarrow x^{2}-\left(\frac{-b}{a}\right) x+\frac{c}{a}=0$
$\mathrm{x}^{2}-($ sum of root $) \mathrm{x}+$ product of root $=0$

- If the roots $\alpha \& \beta$ be reciprocal to each other, then $\mathrm{a}=\mathrm{c}$.
- If the two roots $\alpha \& \beta$ be equal in magnitude and opposite in sign, then $b=0$
- If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are rational number and $\mathrm{a}+\sqrt{b}$ is one root of the quadratic equation, then the other root must be the conjugate $\mathrm{a}-\sqrt{b}$ and vice-versa.

Condition for common Roots:

Let two quadratic equations-

$$
\begin{align*}
& \mathrm{a}_{1} \mathrm{x}^{2}+\mathrm{b}_{1} \mathrm{x}+\mathrm{c}_{1}=0 \tag{i}\\
& \mathrm{a}_{2} \mathrm{x}^{2}+\mathrm{b}_{2} \mathrm{x}+\mathrm{c}_{2}=0 \tag{ii}
\end{align*}
$$

(A) If one root is common then,
$\left(a_{1} b_{2}-a_{2} b_{1}\right)\left(b_{1} c_{2}-b_{2} c_{1}\right)=\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}$
(B) If two roots are common then,
$\Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$

Coordinate Ceometry

Polar form / ध्रुवीय प्रारूप \rightarrow

$\sin \theta=\frac{y}{r} \rightarrow y=r \sin \theta$
$\cos \theta=\frac{x}{r} \rightarrow x=\mathrm{r} \cos \theta$
Coordinates of Points in Polar Form / ध्रुवीय प्रारूप में निर्देशांक बिंदु
$\rightarrow(r \cos \theta, r \sin \theta)$
Distance between two points / दो बिन्दुओं के बीच की दूरी \rightarrow
P^{\bullet}
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$\mathrm{PQ}=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}$

Section Rule \rightarrow

If, Point $P(x, y)$ divides the line segment joining the points P_{1} $\left(x_{1}, y_{1}\right) \& P_{2}\left(x_{2}, y_{2}\right)$ in the ratio m:n, internally.
$x=\frac{\mathrm{mx}_{2}+n x_{1}}{m}, y=\underline{m y_{2}+n y_{1}}$
(b) Coordinates of Mid-point / मध्य बिन्दुओं के निर्देशांक

$$
x=\frac{x_{1}+x_{2}}{2}, y=\frac{y_{2}+y_{1}}{2}
$$

(c) If division is External / यदि विभाजन बाह्य है:

Slope of Straight Line / सरल रेखा की ढ़ाल

Slope (m) $=\tan \theta=\frac{y}{x}$
$>$ When a straight-line passes through two points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ \& $Q\left(x_{2}, y_{2}\right)$ then slope of PQ
Slope (m) $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Equations of straight line / सरल रेखा के समीकरण
I. If a point \& slope is given, $\operatorname{Point} P(\alpha, \beta) \&$ Slope $-m$

Equation of line is , $\mathbf{y}-\boldsymbol{\beta}=\mathbf{m}(\mathbf{x}-\boldsymbol{\alpha})$
II. If two points $\mathrm{P}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \& \mathrm{P}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are given

$$
\text { Slope }, \mathrm{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}
$$

Equation of line is , $\quad \mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{\mathbf{1}}\right)$
III. When angle θ made with the axis \& one point $P\left(x_{1} \& y_{1}\right)$ is given
$m=\tan \theta$
$y-y_{1}=m\left(x-x_{1}\right)$
IV. When slope $m, \&$ intercept made on y axis is given

$y=m x+c, c \Rightarrow$ intercept made on axis
\mathbf{V}. When intercept made on x -axis \& y -axis both are given

VI. General form of straight line, $a x+b y+c=0$

Slope (m) $=-\frac{a}{b}$
$>$ Conditions of intersection of Two Straight Lines.
(a) If, $\mathbf{m}_{1} \mathbf{m}_{\mathbf{2}}=\mathbf{- 1}$, then lines are perpendicular
(b) If, $\mathbf{m}_{1}=\mathbf{m}_{2}$, then lines are parallel.
$>$ Two find the length of perpendicular on a straight line drawn from a point $\mathrm{P}(\alpha, \beta)$

> Gen. Eqn ax $+\mathrm{by}+\mathrm{c}=0$
Length of Perpendicular $=\frac{a \alpha+b \beta+c}{\sqrt{a^{2}+b^{2}}}$
$>$ To Find Angle Between Two Straight Lines
$\tan \theta=\left|\frac{\mathrm{m}_{2}-\mathrm{m}_{1}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
$\mathrm{m}_{1} \rightarrow$ slope of $1^{\text {st }}$ line
$\mathrm{m}_{2} \rightarrow$ slope of $2^{\text {nd }}$ line
$>$ Distance Between Two Parallel Lines ax $+\mathrm{by}+\mathrm{c}_{1}=0$ And $a x+b y+c_{2}=0$
Is $=\left|\frac{c_{1}-c_{2}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}\right|$

Circle

Sector:-

$\Rightarrow \theta=\frac{l}{r} \rightarrow$ length of
\downarrow
always in Radian
$\mathrm{I}^{\mathrm{C}}=\frac{180^{\circ}}{\pi}$
$\pi^{\mathrm{C}}=180^{\circ}$
$I^{\circ}=\frac{\pi^{\mathrm{C}}}{180}$
\Rightarrow Length of arc $=2 \pi r \frac{\theta}{360^{\circ}}$
\Rightarrow Area of sector $\mathrm{OAB}=\pi \mathrm{r}^{2} \frac{\theta}{360^{\circ}}$
\Rightarrow Perimeter of sector $=\pi r \frac{\theta}{180^{\circ}}+2 r$

Segment:-

\rightarrow Area of segment $=$ area of sector $\mathrm{OACB}-$ area of $\triangle \mathrm{OAB}$ $=\pi r^{2} \frac{\theta}{360^{\circ}}-\frac{1}{2} r^{2} \sin \theta$
\rightarrow Perimeter $=$ length of arc ACB + Chord length AB
$=(2 \pi r) \frac{\theta}{360^{\circ}}+2 r \sin \left(\frac{\theta}{2}\right)$

Important Properties Of Circle : -

$>$ Perpendicular from the center of a circle to a chord bisects the chord.

$\mathrm{AM}=\mathrm{MB}$
Chords corresponding to equal arcs are equal.

If $\widehat{A B}=\widehat{C D}$, then chord, $A B=C D$
$>$ Equal Chords of Circle Subtends equal angles at the center.

If $\mathrm{AB}=\mathrm{CD}$
then $\angle 1=\angle 2$
$>$ Equal chords of a circle are equidistance from the center.

If $A B=C D$, Then $O X=O Y$
> The angle subtended by an arc of a circle at the center is double the angle subtended by it at any point on the remaining part of the circle

$x=2 y$
> Angle in same segment of a circle are equal.

$\angle 1=\angle 2$
$>$ Angle in a semicircle is always a right angle.

$>$ If , ABCD is a cyclic quadrilateral

$\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$
$>\mathrm{ABCD}$ is a cyclic quadrilateral.

$\angle 1=\angle 2$
$>$ A tangent at any point of circle is Perpendicular to the radius through the point of contact.

$\mathrm{PA} \times \mathrm{PB}=\mathrm{PC} \times \mathrm{PD}$

$\mathrm{PA} \times \mathrm{PB}=\mathrm{PC} \times \mathrm{PD}$

> $\mathrm{AB}=\mathrm{CD}=$ Direct Common tangent (उभयनिष्ठ अनुस्पशरिखा)

$\mathrm{AB}=\mathrm{CD}=\sqrt{d^{2}-\left(r_{1}-r_{2}\right)^{2}}$

adda 2чา
 test series

RRB JR. ENGINEER 2019 COMBO
(CS \& IT and Allied Engineering)

22 TOTAL TESTS

- 15 Mocks for First Stage
- 7 Mocks for Second Stage
$>\mathrm{AB}=\mathrm{CD}$ Transverse Common Tangents (तिर्यक उभयनिष्ठ स्पशरिखा)

$A B=C D=\sqrt{d^{2}-\left(r_{1}+r_{2}\right)^{2}}$

